41 research outputs found

    Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: a retrospective study of 27 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viral respiratory tract infections (RTI) are relatively understudied in Southeast Asian tropical countries. In temperate countries, seasonal activity of respiratory viruses has been reported, particularly in association with temperature, while inconsistent correlation of respiratory viral activity with humidity and rain is found in tropical countries. A retrospective study was performed from 1982-2008 to investigate the viral etiology of children (≤ 5 years old) admitted with RTI in a tertiary hospital in Kuala Lumpur, Malaysia.</p> <p>Methods</p> <p>A total of 10269 respiratory samples from all children ≤ 5 years old received at the hospital's diagnostic virology laboratory between 1982-2008 were included in the study. Immunofluorescence staining (for respiratory syncytial virus (RSV), influenza A and B, parainfluenza types 1-3, and adenovirus) and virus isolation were performed. The yearly hospitalization rates and annual patterns of laboratory-confirmed viral RTIs were determined. Univariate ANOVA was used to analyse the demographic parameters of cases. Multiple regression and Spearman's rank correlation were used to analyse the correlation between RSV cases and meteorological parameters.</p> <p>Results</p> <p>A total of 2708 cases were laboratory-confirmed using immunofluorescence assays and viral cultures, with the most commonly detected being RSV (1913, 70.6%), parainfluenza viruses (357, 13.2%), influenza viruses (297, 11.0%), and adenovirus (141, 5.2%). Children infected with RSV were significantly younger, and children infected with influenza viruses were significantly older. The four main viruses caused disease throughout the year, with a seasonal peak observed for RSV in September-December. Monthly RSV cases were directly correlated with rain days, and inversely correlated with relative humidity and temperature.</p> <p>Conclusion</p> <p>Viral RTIs, particularly due to RSV, are commonly detected in respiratory samples from hospitalized children in Kuala Lumpur, Malaysia. As in temperate countries, RSV infection in tropical Malaysia also caused seasonal yearly epidemics, and this has implications for prophylaxis and vaccination programmes.</p

    Analysis and prediction of cancerlectins using evolutionary and domain information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the function of a protein is one of the major challenges in the post-genomic era where a large number of protein sequences of unknown function are accumulating rapidly. Lectins are the proteins that specifically recognize and bind to carbohydrate moieties present on either proteins or lipids. Cancerlectins are those lectins that play various important roles in tumor cell differentiation and metastasis. Although the two types of proteins are linked, still there is no computational method available that can distinguish cancerlectins from the large pool of non-cancerlectins. Hence, it is imperative to develop a method that can distinguish between cancer and non-cancerlectins.</p> <p>Results</p> <p>All the models developed in this study are based on a non-redundant dataset containing 178 cancerlectins and 226 non-cancerlectins in which no two sequences have more than 50% sequence similarity. We have applied the similarity search based technique, i.e. BLAST, and achieved a maximum accuracy of 43.25%. The amino acids compositional analysis have shown that certain residues (e.g. Leucine, Proline) were preferred in cancerlectins whereas some other (e.g. Asparatic acid, Asparagine) were preferred in non-cancerlectins. It has been found that the PROSITE domain "Crystalline beta gamma" was abundant in cancerlectins whereas domains like "SUEL-type lectin domain" were found mainly in non-cancerlectins. An SVM-based model has been developed to differentiate between the cancer and non-cancerlectins which achieved a maximum Matthew's correlation coefficient (MCC) value of 0.32 with an accuracy of 64.84%, using amino acid compositions. We have developed a model based on dipeptide compositions which achieved an MCC value of 0.30 with an accuracy of 64.84%. Thereafter, we have developed models based on split compositions (2 and 4 parts) and achieved an MCC value of 0.31, 0.32 with accuracies of 65.10% and 66.09%, respectively. An SVM model based on Position Specific Scoring Matrix (PSSM), generated by PSI-BLAST, was developed and achieved an MCC value of 0.36 with an accuracy of 68.34%. Finally, we have integrated the PROSITE domain information with PSSM and developed an SVM model that has achieved an MCC value of 0.38 with 69.09% accuracy.</p> <p>Conclusion</p> <p>BLAST has been found inefficient to distinguish between cancer and non-cancerlectins. We analyzed the protein sequences of cancer and non-cancerlectins and identified interesting patterns. We have been able to identify PROSITE domains that are preferred in cancer and non-cancerlectins and thus provided interesting insights into the two types of proteins. The method developed in this study will be useful for researchers studying cancerlectins, lectins and cancer biology. The web-server based on the above study, is available at <url>http://www.imtech.res.in/raghava/cancer_pred/</url></p

    Longitudinal Evaluation of an N-Ethyl-N-Nitrosourea-Created Murine Model with Normal Pressure Hydrocephalus

    Get PDF
    Normal-pressure hydrocephalus (NPH) is a neurodegenerative disorder that usually occurs late in adult life. Clinically, the cardinal features include gait disturbances, urinary incontinence, and cognitive decline.Herein we report the characterization of a novel mouse model of NPH (designated p23-ST1), created by N-ethyl-N-nitrosourea (ENU)-induced mutagenesis. The ventricular size in the brain was measured by 3-dimensional micro-magnetic resonance imaging (3D-MRI) and was found to be enlarged. Intracranial pressure was measured and was found to fall within a normal range. A histological assessment and tracer flow study revealed that the cerebral spinal fluid (CSF) pathway of p23-ST1 mice was normal without obstruction. Motor functions were assessed using a rotarod apparatus and a CatWalk gait automatic analyzer. Mutant mice showed poor rotarod performance and gait disturbances. Cognitive function was evaluated using auditory fear-conditioned responses with the mutant displaying both short- and long-term memory deficits. With an increase in urination frequency and volume, the mutant showed features of incontinence. Nissl substance staining and cell-type-specific markers were used to examine the brain pathology. These studies revealed concurrent glial activation and neuronal loss in the periventricular regions of mutant animals. In particular, chronically activated microglia were found in septal areas at a relatively young age, implying that microglial activation might contribute to the pathogenesis of NPH. These defects were transmitted in an autosomal dominant mode with reduced penetrance. Using a whole-genome scan employing 287 single-nucleotide polymorphic (SNP) markers and further refinement using six additional SNP markers and four microsatellite markers, the causative mutation was mapped to a 5.3-cM region on chromosome 4.Our results collectively demonstrate that the p23-ST1 mouse is a novel mouse model of human NPH. Clinical observations suggest that dysfunctions and alterations in the brains of patients with NPH might occur much earlier than the appearance of clinical signs. p23-ST1 mice provide a unique opportunity to characterize molecular changes and the pathogenic mechanism of NPH

    May measurement month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension (vol 40, pg 2006, 2019)

    Get PDF
    corecore