10,663 research outputs found
Masses and Mixings from Neutrino Beams pointing to Neutrino Telescopes
We discuss the potential to determine leading oscillation parameters, the
value and the sign of \Delta m^2_{31}, as well as the magnitude of \sin^2
2\theta_{13} using a conventional wide band neutrino beam pointing to water or
ice Cherenkov neutrino detectors known as ``Neutrino Telescopes''. We find that
precision measurements of \Delta m^2_{31} and \theta_{23} are possible and
that, even though it is not possible to discriminate between charges in the
detector, there is a remarkably good sensitivity to the mixing angle
\theta_{13} and the sign of \Delta m^2_{31}.Comment: 9 pages, 4 figure
Effect of environment on thermal control coatings
Ferrocyanide and ferricyanide additives for prevention of optical degradation of coatings by ultraviolet radiation and vacuu
Reconstruction of potential energy profiles from multiple rupture time distributions
We explore the mathematical and numerical aspects of reconstructing a
potential energy profile of a molecular bond from its rupture time
distribution. While reliable reconstruction of gross attributes, such as the
height and the width of an energy barrier, can be easily extracted from a
single first passage time (FPT) distribution, the reconstruction of finer
structure is ill-conditioned. More careful analysis shows the existence of
optimal bond potential amplitudes (represented by an effective Peclet number)
and initial bond configurations that yield the most efficient numerical
reconstruction of simple potentials. Furthermore, we show that reconstruction
of more complex potentials containing multiple minima can be achieved by
simultaneously using two or more measured FPT distributions, obtained under
different physical conditions. For example, by changing the effective potential
energy surface by known amounts, additional measured FPT distributions improve
the reconstruction. We demonstrate the possibility of reconstructing potentials
with multiple minima, motivate heuristic rules-of-thumb for optimizing the
reconstruction, and discuss further applications and extensions.Comment: 20 pages, 9 figure
Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems
The operations drip and mate considered in (mem)brane computing resemble the
operations cut and recombination well known from DNA computing. We here
consider sets of vesicles with multisets of objects on their outside membrane
interacting by drip and mate in two different setups: in test tube systems, the
vesicles may pass from one tube to another one provided they fulfill specific
constraints; in tissue-like P systems, the vesicles are immediately passed to
specified cells after having undergone a drip or mate operation. In both
variants, computational completeness can be obtained, yet with different
constraints for the drip and mate operations
Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler
An analysis of single-electron orbits in combined coaxial wiggler and axial
guide magnetic fields is presented. Solutions of the equations of motion are
developed in a form convenient for computing orbital velocity components and
trajectories in the radially dependent wiggler. Simple analytical solutions are
obtained in the radially-uniform-wiggler approximation and a formula for the
derivative of the axial velocity with respect to Lorentz factor
is derived. Results of numerical computations are presented and the
characteristics of the equilibrium orbits are discussed. The third spatial
harmonic of the coaxial wiggler field gives rise to group orbits which
are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.
Autonomy and Singularity in Dynamic Fracture
The recently developed weakly nonlinear theory of dynamic fracture predicts
corrections to the standard asymptotic linear elastic
displacement-gradients, where is measured from the tip of a tensile crack.
We show that the singularity does not automatically conform with the
notion of autonomy (autonomy means that any crack tip nonlinear solution is
uniquely determined by the surrounding linear elastic fields) and
that it does not automatically satisfy the resultant Newton's equation in the
crack parallel direction. We show that these two properties are interrelated
and that by requiring that the resultant Newton's equation is satisfied,
autonomy of the singular solution is retained. We further show that the
resultant linear momentum carried by the singular fields vanishes
identically. Our results, which reveal the physical and mathematical nature of
the new solution, are in favorable agreement with recent near tip measurements.Comment: 4 pages, 2 figures, related papers: arXiv:0902.2121 and
arXiv:0807.486
Ensemble learning of linear perceptron; Online learning theory
Within the framework of on-line learning, we study the generalization error
of an ensemble learning machine learning from a linear teacher perceptron. The
generalization error achieved by an ensemble of linear perceptrons having
homogeneous or inhomogeneous initial weight vectors is precisely calculated at
the thermodynamic limit of a large number of input elements and shows rich
behavior. Our main findings are as follows. For learning with homogeneous
initial weight vectors, the generalization error using an infinite number of
linear student perceptrons is equal to only half that of a single linear
perceptron, and converges with that of the infinite case with O(1/K) for a
finite number of K linear perceptrons. For learning with inhomogeneous initial
weight vectors, it is advantageous to use an approach of weighted averaging
over the output of the linear perceptrons, and we show the conditions under
which the optimal weights are constant during the learning process. The optimal
weights depend on only correlation of the initial weight vectors.Comment: 14 pages, 3 figures, submitted to Physical Review
Robust topology optimization of three-dimensional photonic-crystal band-gap structures
We perform full 3D topology optimization (in which "every voxel" of the unit
cell is a degree of freedom) of photonic-crystal structures in order to find
optimal omnidirectional band gaps for various symmetry groups, including fcc
(including diamond), bcc, and simple-cubic lattices. Even without imposing the
constraints of any fabrication process, the resulting optimal gaps are only
slightly larger than previous hand designs, suggesting that current photonic
crystals are nearly optimal in this respect. However, optimization can discover
new structures, e.g. a new fcc structure with the same symmetry but slightly
larger gap than the well known inverse opal, which may offer new degrees of
freedom to future fabrication technologies. Furthermore, our band-gap
optimization is an illustration of a computational approach to 3D dispersion
engineering which is applicable to many other problems in optics, based on a
novel semidefinite-program formulation for nonconvex eigenvalue optimization
combined with other techniques such as a simple approach to impose symmetry
constraints. We also demonstrate a technique for \emph{robust} topology
optimization, in which some uncertainty is included in each voxel and we
optimize the worst-case gap, and we show that the resulting band gaps have
increased robustness to systematic fabrication errors.Comment: 17 pages, 9 figures, submitted to Optics Expres
- …