17,891 research outputs found

    Tidal Disruption Flares: The Accretion Disk Phase

    Full text link
    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically the hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of main results derived from our simulations is that black body fits of X-ray data tend to overestimate the true mean disk temperature. The temperature derived from black body fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous timescale, which fixes also the raising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10^45-10^46 erg s^-1 whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 years. Predicted soft X-ray light curves were fitted to data on galaxies in which a variable X-ray emission, related to tidal events, was detected.Comment: 14 pages, 11 figures, Accepted for publication in Ap

    QCD and QED Corrections to Light-by-Light Scattering

    Get PDF
    We present the QCD and QED corrections to the fermion-loop contributions to light-by-light scattering, gamma gamma to gamma gamma, in the ultrarelativistic limit where the kinematic invariants are much larger than the masses of the charged fermions.Comment: 17 pages, 3 figure files, JHEP styl

    Continuous matter creation and the acceleration of the universe: the growth of density fluctuations

    Full text link
    Cosmologies including continuous matter creation are able to reproduce the main properties of the standard Λ\LambdaCDM model, in particular in cases where the particle and entropy production rates are equal. These specific models, characterized by a mass density equal to the critical value, behave like the standard Λ\LambdaCDM model at early times whereas their late evolution is similar to the steady-state cosmology. The maximum amplitude of density fluctuations in these models depends on the adopted creation rate, related here to the parameter Ωv\Omega_v and this limitation could be a difficulty for the formation of galaxies and large-scale structure in this class of universe. Additional problems are related with predictions either of the random peculiar velocities of galaxies or the present density of massive clusters of galaxies, both being largely overestimated with respect to observational data.Comment: 11 pages, 2 figures, accepted for publication in General Relativity and Gravitatio
    corecore