213 research outputs found

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Amelogenin Supramolecular Assembly in Nanospheres Defined by a Complex Helix-Coil-PPII Helix 3D-Structure

    Get PDF
    Tooth enamel, the hardest material in the human body, is formed within a self-assembled matrix consisting mostly of amelogenin proteins. Here we have determined the complete mouse amelogenin structure under physiological conditions and defined interactions between individual domains. NMR spectroscopy revealed four major amelogenin structural motifs, including an N-terminal assembly of four α-helical segments (S9-V19, T21-P33, Y39-W45, V53-Q56), an elongated random coil region interrupted by two 310 helices (∌P60-Q117), an extended proline-rich PPII-helical region (P118-L165), and a charged hydrophilic C-terminus (L165-D180). HSQC experiments demonstrated ipsilateral interactions between terminal domains of individual amelogenin molecules, i.e. N-terminal interactions with corresponding N-termini and C-terminal interactions with corresponding C-termini, while the central random coil domain did not engage in interactions. Our HSQC spectra of the full-length amelogenin central domain region completely overlapped with spectra of the monomeric Amel-M fragment, suggesting that the central amelogenin coil region did not involve in assembly, even in assembled nanospheres. This finding was confirmed by analytical ultracentrifugation experiments. We conclude that under conditions resembling those found in the developing enamel protein matrix, amelogenin molecules form complex 3D-structures with N-terminal α-helix-like segments and C-terminal PPII-helices, which self-assemble through ipsilateral interactions at the N-terminus of the molecule

    Ideologies of time: How elite corporate actors engage the future

    Get PDF
    Our paper deals with how elite corporate actors in a Western capitalist-democratic society conceive of and prepare for the future. Paying attention to how senior officers of ten important Danish companies make sense of the future will help us to identify how particular temporal narratives are ideologically marked. This ideological dimension offers a common sense frame that is structured around a perceived inevitability of capitalism, a market economy as the basic organizational structure of the social and economic order, and an assumption of confident access to the future. Managers envisage their organization?s future and make plans for organizational action in a space where ?business as usual? reigns, and there is little engagement with the future as fundamentally open; as a time-yet-to-come. In using a conceptual lens inspired by the work of Fredric Jameson, we first explore the details of this presentism and a particular colonization of the future, and then linger over small disruptions in the narratives of our interviewees which point to what escapes or jars their common sense frame, explore the implicit meanings they assign to their agency, and also find clues and traces of temporal actions and strategies in their narratives that point to a subtly different engagement with time

    Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Get PDF
    BACKGROUND: Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT) and rates of diffusional (sodium independent) and active (sodium dependent) uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. METHODS: Wild-type, heterozygous cftr (+/-) and homozygous cftr (-/-) mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer (3)H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. RESULTS: In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/-) and two-fold higher in cftr (+/-) mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/-) mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/-) animals. CONCLUSIONS: In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/-) mice > cftr (+/-) > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function

    Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review

    Get PDF
    There is mounting evidence that pulmonary arterial hypertension (PAH), asthma and chronic obstructive pulmonary disease (COPD) share important pathological features, including inflammation, smooth muscle contraction and remodeling. No existing drug provides the combined potential advantages of reducing vascular- and bronchial-constriction, and anti-inflammation. Vasoactive intestinal peptide (VIP) is widely expressed throughout the cardiopulmonary system and exerts a variety of biological actions, including potent vascular and airway dilatory actions, potent anti-inflammatory actions, improving blood circulation to the heart and lung, and modulation of airway secretions. VIP has emerged as a promising drug candidate for the treatment of cardiopulmonary disorders such as PAH, asthma, and COPD. Clinical application of VIP has been limited in the past for a number of reasons, including its short plasma half-life and difficulty in administration routes. The development of long-acting VIP analogues, in combination with appropriate drug delivery systems, may provide clinically useful agents for the treatment of PAH, asthma, and COPD. This article reviews the physiological significance of VIP in cardiopulmonary system and the therapeutic potential of VIP-based agents in the treatment of pulmonary diseases
    • 

    corecore