28,377 research outputs found

    Fatigue failure analysis of vibrating screen spring by means of finite element simulation: a case study

    Get PDF
    Vibrating screens are often used in the mining industry to separate mineral particles by size. In many designs, spring arrays are used to provide the system with the necessary stiffness for screens to vibrate in a controlled manner. Naturally, these springs are subjected to varying loading cycles, which can cause their premature fatigue failure. This behavior has been studied by means of finite element analysis and compared with data obtained from a real case scenario, in which a helical spring failed. The 3D computational model was developed using the geometric characteristics and material properties of a fractured spring, as well as the loading characteristics of a specific vibrating screen. The meshing and the simulation tasks were performed in the general purpose software ANSYS Mechanical. Given the nature of the helical springs and the high-cycle loading conditions, for the fatigue analysis it was determined that a stress-life approach with constant amplitude and non-proportional loading best fit the investigated phenomenon. In solving the nonproportional loading case, stress values of two static scenarios were required to determine the upper and lower limits. Then, to perform the fatigue calculations a solution combination was used. In addition, in order to correct the effect of mean stress and calculate the stresses component respectively the Goodman and Von Mises theories were employed. Simulation results showed that spring would present failure below the second turn of the coil when working with the full nominal load during nearly forty million cycles. These results strongly agreed with the data extracted from a vibrating screen where fractured spring had been working. Fatigue analysis also predicted that the nominal load should be reduced to 90% in order for the spring to meet the minimum life requirements before failure occur

    On the heating of source of the Orion KL hot core

    Full text link
    We present images of the J=10-9 rotational lines of HC3N in the vibrationally excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images show that the spatial distribution and the size emission from the 1v7 and 1v5 levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear indication that the HC is composed of condensations with very different temperatures (170 K for the 1v7 peak and >230>230 K for the 1v5 peak). The temperature derived from the 1v7 and 1v5 lines increases with the projected distance to the suspected main heating source I. Projection effects along the line of sight could explain the temperature gradient as produced by source I. However, the large luminosity required for source I, >5 10^5 Lsolar, to explain the 1v5 line suggests that external heating by this source may not dominate the heating of the HC. Simple model calculations of the vibrationally excited emission indicate that the HC can be internally heated by a source with a luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south of source I). We also report the first detection of high-velocity gas from vibrationally excited HC3N emission. Based on excitation arguments we conclude that the main heating source is also driving the molecular outflow. We speculate that all the data presented in this letter and the IR images are consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter

    Foreign ownership, firm performance, and the geography of civic capital

    Get PDF
    It is well established in the literature that foreign affiliates are subject to a series of governance and assimilation costs that deteriorate their performance. This is particularly relevant for firms which have been recently acquired by foreign investors. We employ the variation in civic capital across Italian provinces as an exogenous determinant of these governance costs. We derive the testable implication that there should be a clean evidence of a negative effect of foreign ownership on performance in areas where civic capital is low. As the level of local civic capital increases, this reduces the scope for internal transaction costs, and makes the governance of foreign affiliates easier, and their performance better. We take this prediction to the data and find confirmation of our conceptual framework. Our analysis underlines the importance of the geographic heterogeneity of informal institutions when analyzing the effect of foreign ownership on firm performance.

    A new anti-neutrino detection technique based on positronium tagging with plastic scintillators

    Full text link
    The main signature for anti-neutrino detection in reactor and geo-neutrino experiments based on scintillators is provided by the space-time coincidence of positron and neutron produced in the Inverse Beta Decay reaction. Such a signature strongly suppresses backgrounds and allows for measurements performed underground with a relatively high signal-to-background ratio. In an aboveground environment, however, the twofold coincidence technique is not sufficient to efficiently reject the high background rate induced by cosmogenic events. Enhancing the positron-neutron twofold coincidence efficiency has the potential to pave the way future aboveground detectors for reactor monitoring. We propose a new detection scheme based on a threefold coincidence, between the positron ionization, the ortho-positronium (o-Ps) decay, and the neutron capture, in a sandwich detector with alternated layers of plastic scintillator and aerogel powder. We present the results of a set of dedicated measurements on the achievable light yield and on the o-Ps formation and lifetime. The efficiencies for signal detection and background rejection of a preliminary detector design are also discussed.Comment: 18 pages, 10 figure

    Spin-dependent beating patterns in thermoelectric properties: Filtering the carriers of the heat flux in a Kondo adatom system

    Full text link
    We theoretically investigate the thermoelectric properties of a spin-polarized two-dimensional electron gas hosting a Kondo adatom hybridized with an STM tip. Such a setup is treated within the single-impurity Anderson model in combination with the atomic approach for the Green's functions. Due to the spin dependence of the Fermi wavenumbers the electrical and thermal conductances, together with thermopower and Lorenz number reveal beating patterns as function of the STM tip position in the Kondo regime. In particular, by tuning the lateral displacement of the tip with respect to the adatom vicinity, the temperature and the position of the adatom level, one can change the sign of the Seebeck coefficient through charge and spin. This opens a possibility of the microscopic control of the heat flux analogously to that established for the electrical current
    corecore