1,461 research outputs found

    Novel Single Photon Detectors for UV Imaging

    Full text link
    There are several applications which require high position resolution UV imaging. For these applications we have developed and successfully tested a new version of a 2D UV single photon imaging detector based on a microgap RPC. The main features of such a detectors is the high position resolution - 30 micron in digital form and the high quantum efficiency (1-8% in the spectral interval of 220-140 nm). Additionally, they are spark- protected and can operate without any feedback problems at high gains, close to a streamer mode. In attempts to extend the sensitivity of RPCs to longer wavelengths we have successfully tested the operation of the first sealed parallel-plate gaseous detectors with CsTe photocathodes. Finally, the comparison with other types of photosensitive detectors is given and possible fields of applications are identified.Comment: Presented at the 5th International Workshop on RICH detectors Playa del Carmen, Mexico, November 200

    A Novel UV Photon Detector with Resistive Electrodes

    Full text link
    In this study we present first results from a new detector of UV photons: a thick gaseous electron multiplier (GEM) with resistive electrodes, combined with CsI or CsTe/CsI photocathodes. The hole type structure considerably suppresses the photon and ion feedback, whereas the resistive electrodes protect the detector and the readout electronics from damage by any eventual discharges. This device reaches higher gains than a previously developed photosensitive RPC and could be used not only for the imaging of UV sources, flames or Cherenkov light, for example, but also for the detection of X-rays and charged particles.Comment: Presented at the International Workshop on Resistive Plate Chambers, Korea, October 200

    Detection of the primary scintillation light from dense Ar, Kr and Xe with novel photosensitive gaseous detectors

    Get PDF
    The detection of primary scintillation light in combination with the charge or secondary scintillation signals is an efficient technique to determine the events t=0 as well as particle / photon separation in large mass TPC detectors filled with noble gases and/or condensed noble gases. The aim of this work is to demonstrate that costly photo-multipliers could be replaced by cheap novel photosensitive gaseous detectors: wire counters, GEMs or glass capillary tubes coupled with CsI photocathodes. We have performed systematic measurements with Ar, Kr and Xe gas at pressures in the range of 1-50 atm as well as some preliminary measurements with liquid Xe and liquid Ar. With the gaseous detectors we succeeded in detecting scintillation light produced by 22 keV X-rays with an efficiency of close to 100%. We also detected the scintillation light produced by bs (5 keV deposit energy) with an efficiency close to 25%. Successful detection of scintillation from 22 keV gammas open new experimental possibilities not only for nTOF and ICARUS experiments, but also in others, like WIMPs search through nuclear recoil emission

    The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures

    Full text link
    We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same capillary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.Comment: Presented at the IEEE Nuclear Science Symposium, Roma, 200

    An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma

    Get PDF
    The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer

    The Development and Study of High-Position Resolution (50 micron) RPCs for Imaging X-rays and UV photons

    Full text link
    Nowadays, commonly used Resistive Plate Chambers (RPCs) have counting rate capabilities of ~10E4Hz/cm2 and position resolutions of ~1cm. We have developed small prototypes of RPCs (5x5 and 10x10cm2) having rate capabilities of up to 10E7Hz/cm2 and position resolutions of 50 micron("on line" without application of any treatment method like "center of gravity"). The breakthrough in achieving extraordinary rate and position resolutions was only possible after solving several serious problems: RPC cleaning and assembling technology, aging, spurious pulses and afterpulses, discharges in the amplification gap and along the spacers. High-rate, high-position resolution RPCs can find a wide range of applications in many different fields, for example in medical imaging. RPCs with the cathodes coated by CsI photosensitive layer can detect ultraviolet photons with a position resolution that is better than ~30 micron. Such detectors can also be used in many applications, for example in the focal plane of high resolution vacuum spectrographs or as image scanners.Comment: 6 pages, 5 figures, other comment

    A multilevel analysis of three randomised controlled trials of the Australian Medical Sheepskin in the prevention of sacral pressure ulcers

    Get PDF
    Objective: To assess the effectiveness of the Australian Medical Sheepskin in preventing sacral pressure ulcers (PUs), based on combined data from existing published trials. Design and setting: Data from two randomised controlled trials (RCTs) among Australian hospital patients and one RCT among Dutch nursing home patients were pooled, comprising a total population of 1281 patients from 45 nursing wards in 11 institutions. These data were analysed in two ways: with conventional meta-analysis based on the published effect sizes; and with multilevel binary logistic regression based on the combined individual patient data. In the multilevel analysis, patient, nursing ward and institution were used as levels and we controlled for sex, age, PU risk and number of days of observation.Main outcome measure: Incidence of sacral PUs. Results: Overall, the incidence of sacral PUs was 12.2% in the control group versus 5.4% in the intervention group with an Australian Medical Sheepskin. Conventional meta-analysis showed significantly reduced odds of developing a PU while using the sheepskin (odds ratio [OR], 0.37 [95% CI, 0.17–0.77]). Multilevel analysis gave an OR of 0.35 and narrowed the confidence interval by almost 50% (95% CI, 0.23–0.55). Conclusions: These analyses of pooled data confirm that the Australian Medical Sheepskin is effective in preventing sacral PUs. Multilevel analysis of individual patient data gives a more precise effect estimate than conventional meta-analysis

    Інноваційний розвиток у моделі становлення підприємницького середовища України

    Get PDF
    В статті пропонується розглядати та оцінювати інноваційну модель діяльності підприємства через так звану бінарну природу створюваного ним продукту (послуги), що з одного боку має конкурентний зміст, тобто напряму пов’язаний з певними показниками, реально втіленими в товарі перевагами над іншим товаром-аналогом, а з іншого – підвищує науково-технологічний рівень підприємства, зумовлюючи інноваційні переваги інституціонального характеру, що і надалі стимулюють його розвиток до самовдосконалення. Ці переваги ми відносимо до структурно-інноваційних, тобто таких, що мають вплив на подальшу модель розвитку підприємства з огляду інноваційності його функціонування
    corecore