24 research outputs found

    Comparative genetic structure in pines: evolutionary and conservation consequences Estructura genética comparada en pinos: consecuencias evolutivas y para la conservación

    No full text
    Pines have been the focus of several studies that estimate population genetic parameters using both allozymes and chloroplast single sequence repeats (SSRs). Also, the genus has also been recently studied using molecular systematics so that we now have a more clear understanding of their evolutionary history. With this background we studied comparatively the genetic structure in pines. Expected heterozygosity is particularly constant with a 99 % confidence interval between 0.19 and 0.23 in species that have been studied until now using allozymes. There is a significant proportion of species (9/41) that show high population differentiation estimates (Fst = or larger than 0.15) and five of these have large and wingless seeds probably associated with low densities, bird dispersal mechanisms and resistance to water stress. These species include the North American pinyon pines. Outcrossing rates are also constant among species from both subgenus Pinus and subgenus Strobus, which probably reflects a selective limit to the amount of deleterious alleles that can be maintained in pine species and this also affects inbreeding levels. We also explored the data published using microsatellites in pines and conclude that these markers uncover a higher proportion of variation and genetic differentiation as expected and that the evolutionary models that are used to derive the population genetic structure estimators should take into account other sources of mutation (point mutations, larger insertions and or deletions and duplications) to better understand the comparative applications of these molecular markers<br>Los pinos han sido el objeto de varios estudios para estimar los parámetros genéticos de la población utilizando tanto aloenzimas como fragmentos repetidos de secuencia sencilla (RSSs) de cloroplasto. Este género también ha sido estudiado recientemente utilizando sistemática molecular de tal manera que ahora tenemos un entendimiento más claro de su historia evolutiva. Con estos antecedentes estudiamos comparativamente la estructura genética de pinos. La heterocigosis esperada es particularmente constante con límites de confianza al 99 % entre 0,19 y 0,23 en las especies que se han estudiado hasta ahora utilizando aloenzimas. Hay una proporción significativa de especies (9/41) que muestran estimados de diferenciación altos (Fst = o mayor que 0,15). De ellos cinco especies tienen semillas grandes y sin alas asociadas probablemente con bajas densidades, dispersión de semillas por aves y resistencia a sequía. Estas especies incluyen a los pinos piñoneros de Norteamérica. Las tasas de entrecruzamiento también son constantes entre especies tanto del subgénero Pinus como del subgénero Strobus que refleja probablemente un límite selectivo a la cantidad de alelos deletéreos que pueden ser mantenidos en las poblaciones y que afecta también el nivel de consanguinidad. También exploramos los datos publicados usando microsatélites en pinos, concluyendo que estos marcadores muestran una mayor cantidad de variación y diferenciación genética como es esperado y que los modelos de evolución molecular utilizados para derivar los estimadores de la estructura genética de la población deben de tomar en consideración otras fuentes de mutación (mutaciones puntuales, inserciones y deleciones de mayor tamaño y la existencia de duplicaciones) para entender las aplicaciones que desde el punto de vista comparado se pueden hacer con este tipo de marcadore

    Microstructure and Hydrophobicity of the External Surface of a Sonoran Desert Beetle

    No full text
    We have studied the external surface (elytra) of the Sonoran Desert beetle (Eleodes eschscholtzii). Our aim was to assess whether this species has similar traits to some beetles from the Namibian Desert that are known to have hierarchical micropatterns that allow for water harvesting. We have conducted scanning electron microscopy (SEM) and apparent contact angle experiments on specimens collected at two sampling sites with different ambient humidity. The results show that the beetle’s external surface microstructure is composed of a compact array of polygons with randomly scattered protuberances. The density of the polygons in the microstructure is different for individuals collected in different sites: the polygon array is denser in the more humid site and less dense in the drier site. The measured contact angles also depend on the sampling site. For individuals collected in the drier site, the average apparent contact angle is 70°, whereas for the more humid site, the average apparent contact angle is 92°. FT-IR experiments are consistent with the presence of hydrophobic wax compounds in the studied surfaces. Our investigation opens new questions that are currently being addressed by experiments that are underway. For instance, it would be interesting to know whether the observed nanopatterns could be used in biomimetic devices for water harvesting purposes

    Genomic Analyses of Wild and Cultivated Bacanora Agave (<i>Agave angustifolia</i> var. <i>pacifica</i>) Reveal Inbreeding, Few Signs of Cultivation History and Shallow Population Structure

    No full text
    Due to the recent increase in demand for agave-based beverages, many wild agave populations have experienced rapid decline and fragmentation, whereas cultivated plants are now managed at monocultural plantations, in some cases involving clonal propagation. We examined the relative effect of migration, genetic drift, natural selection and human activities on the genetic repertoire of Agave angustifolia var. pacifica, an agave used for bacanora (an alcoholic spirit similar to tequila) production in northwestern Mexico. We sampled 34 wild and cultivated sites and used over eleven thousand genome-wide SNPs. We found shallow genetic structure among wild samples, although we detected differentiation between coastal and inland sites. Surprisingly, no differentiation was found between cultivated and wild populations. Moreover, we detected moderate inbreeding (FIS ~ 0.13) and similar levels of genomic diversity in wild and cultivated agaves. Nevertheless, the cultivated plants had almost no private alleles and presented evidence of clonality. The overall low genetic structure in A. angustifolia var. pacifica is apparently the result of high dispersibility promoted by pollinators and the possibility of clonal reproduction. Incipient cultivation history and reliance on wild seeds and plants are probably responsible for the observed patterns of high genetic connectivity and considerable diversity in cultivated samples

    Patterns of abundance and population structure of Pachycereus pringlei (Cactaceae), a columnar cactus of the Sonoran Desert.

    No full text
    Abstract Understanding the mechanisms that determine the distribution and abundance of plants is a major problem in ecology. However, very few studies have explored the factors controlling the abundance of columnar cacti throughout their range of distribution. In this paper, we describe the density and size structure of 26 populations of Pachycereus pringlei throughout its distribution range in the Sonoran Desert. Major differences in abundance were detected between island and mainland and peninsular areas, with islands sustaining significantly larger densities than mainland and peninsular populations. Within peninsular populations, the abundance was negatively associated with latitude and positively associated with annual and seasonal rainfall. In contrast, the abundance in mainland populations showed neither latitudinal trend nor an association with rainfall. In peninsular populations, mean height and basal diameter of branched plants showed a negative association with population density whereas mainland populations showed no significant association. None of the populations exhibited a population structure that fitted the log-normal distribution expected for young, growing populations with constant recruitment. Insular, peninsular and mainland populations showed a population structure with an uneven size distribution typical of populations experiencing regeneration pulses

    Sexual stability in the nearly dioecious Pinus johannis (Pinaceae)

    No full text
    Premise of the study: Even though dioecy is a dominant sexual system among gymnosperms, little is known about its evolutionary history. Pinus johannis may represent a model system because unisexual and monoecious individuals compose its populations. The presence of unisexual individuals in other Pinus species is a consequence of sexual lability. Here we determined whether P. johannis represents the first example of a dioecious or nearly dioecious reproductive system in conifers by evaluating its sexual stability. Methods: To assess the stability of sexual expression, we quantified the proportion of male vs. female reproductive structures produced by trees over multiple years and tested for the presence of sexual dimorphism. Sexual lability hypotheses were also examined by looking at the relationship between environmental factors and sexual expression and by comparing the reproductive behavior of P. johannis with its closest labile relative, P. edulis. Key results: Pinus johannis is nearly dioecious: ∼99% of individuals are unisexual or express a low proportion of the opposite gender with few changes in sexual expression through time. We found sexual dimorphism consistent with sexual stability. Sexual expression did not vary with tree size/age, abiotic environment, or herbivore removal, providing evidence against sexual lability. Individuals of P. johannis tended to produce only male or female strobili, whereas those of P. edulis were mainly monoecious with a gradient in the female to male strobili ratio. Conclusions: This study represents the first report of a nearly stable dioecious Pinus species. The variety of sexual morphs coexisting in the same population makes P. johannis a model for studying the evolution of dioecy in gymnosperms

    Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA

    No full text
    Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations) and genetic origin (based on a previous study). We identified six polymorphic sites, including five insertion/deletion (indels) types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038). Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80) with 10 and 12 haplotypes, respectively. The common haplotype (H1) for both networks included cacao trees from all geographic locations (geographic approach) and four genetic groups (genetic approach). This common haplotype (ancient) derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (FST = 0) and SAMOVA (FST = 0.04393) results. One population (Mazatán) showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding
    corecore