8 research outputs found

    The Kunitz-Like Modulatory Protein Haemangin Is Vital for Hard Tick Blood-Feeding Success

    Get PDF
    Ticks are serious haematophagus arthropod pests and are only second to mosquitoes as vectors of diseases of humans and animals. The salivary glands of the slower feeding hard ticks such as Haemaphysalis longicornis are a rich source of bioactive molecules and are critical to their biologic success, yet distinct molecules that help prolong parasitism on robust mammalian hosts and achieve blood-meals remain unidentified. Here, we report on the molecular and biochemical features and precise functions of a novel Kunitz inhibitor from H. longicornis salivary glands, termed Haemangin, in the modulation of angiogenesis and in persistent blood-feeding. Haemangin was shown to disrupt angiogenesis and wound healing via inhibition of vascular endothelial cell proliferation and induction of apoptosis. Further, this compound potently inactivated trypsin, chymotrypsin, and plasmin, indicating its antiproteolytic potential on angiogenic cascades. Analysis of Haemangin-specific gene expression kinetics at different blood-feeding stages of adult ticks revealed a dramatic up-regulation prior to complete feeding, which appears to be functionally linked to the acquisition of blood-meals. Notably, disruption of Haemangin-specific mRNA by a reverse genetic tool significantly diminished engorgement of adult H. longicornis, while the knock-down ticks failed to impair angiogenesis in vivo. To our knowledge, we have provided the first insights into transcriptional responses of human microvascular endothelial cells to Haemangin. DNA microarray data revealed that Haemangin altered the expression of 3,267 genes, including those of angiogenic significance, further substantiating the antiangiogenic function of Haemangin. We establish the vital roles of Haemangin in the hard tick blood-feeding process. Moreover, our results provide novel insights into the blood-feeding strategies that enable hard ticks to persistently feed and ensure full blood-meals through the modulation of angiogenesis and wound healing processes

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review

    Full text link

    Prostaglandin E2 in tick saliva regulates macrophage cell migration and cytokine profile

    Get PDF
    BACKGROUND: Ticks are obligate hematophagous ectoparasites that suppress the host’s immune and inflammatory responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick saliva contains a high concentration of prostaglandin E(2) (PGE(2)), a potent modulator of inflammation, we used a PGE(2) receptor antagonist to evaluate the role of PGE(2) in the different migratory responses induced by saliva and its impact on macrophage cytokine profile. METHODS: Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA) were used to measure saliva PGE(2) content and the changes in macrophage intracellular cyclic adenosine monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in the absence and presence of the PGE(2) receptor antagonist, AH 6809, using blind well chamber assays. A cytokine antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple comparisons. RESULTS: The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced macrophages to secrete copious amounts of PGE(2), and conditioned medium from these cells caused an AH 6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast activity. We show that tick saliva decreased the secretion of the pro-inflammatory cytokines regulated and normal T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I (sTNFRI) through a PGE(2)-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide (LPS) stimulated macrophages. CONCLUSIONS: Our data show that ticks utilize salivary PGE(2) to subvert the ability of macrophages to secrete pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing
    corecore