1,542 research outputs found

    Simple parametrization for the ground-state energy of the infinite Hubbard chain incorporating Mott physics, spin-dependent phenomena and spatial inhomogeneity

    Full text link
    Simple analytical parametrizations for the ground-state energy of the one-dimensional repulsive Hubbard model are developed. The charge-dependence of the energy is parametrized using exact results extracted from the Bethe-Ansatz. The resulting parametrization is shown to be in better agreement with highly precise data obtained from fully numerical solution of the Bethe-Ansatz equations than previous expressions [Lima et al., Phys. Rev. Lett. 90, 146402 (2003)]. Unlike these earlier proposals, the present parametrization correctly predicts a positive Mott gap at half filling for any U>0. The construction is extended to spin-dependent phenomena by parametrizing the magnetization-dependence of the ground-state energy using further exact results and numerical benchmarking. Lastly, the parametrizations developed for the spatially uniform model are extended by means of a simple local-density-type approximation to spatially inhomogeneous models, e.g., in the presence of impurities, external fields or trapping potentials. Results are shown to be in excellent agreement with independent many-body calculations, at a fraction of the computational cost.Comment: New Journal of Physics, accepte

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    Entanglement from density measurements: analytical density-functional for the entanglement of strongly correlated fermions

    Full text link
    We derive an analytical density functional for the single-site entanglement of the one-dimensional homogeneous Hubbard model, by means of an approximation to the linear entropy. We show that this very simple density functional reproduces quantitatively the exact results. We then use this functional as input for a local density approximation to the single-site entanglement of inhomogeneous systems. We illustrate the power of this approach in a harmonically confined system, which could simulate recent experiments with ultracold atoms in optical lattices as well as in a superlattice and in an impurity system. The impressive quantitative agreement with numerical calculations -- which includes reproducing subtle signatures of the particle density stages -- shows that our density-functional can provide entanglement calculations for actual experiments via density measurements. Next we use our functional to calculate the entanglement in disordered systems. We find that, at contrast with the expectation that disorder destroys the entanglement, there exist regimes for which the entanglement remains almost unaffected by the presence of disordered impurities.Comment: 6 pages, 3 figure

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    On curvature coupling and quintessence fine-tuning

    Full text link
    We discuss the phenomenological model in which the potential energy of the quintessence field depends linearly on the energy density of the spatial curvature. We find that the pressure of the scalar field takes a different form when the potential of the scalar field also depends on the scale factor and the energy momentum tensor of the scalar field can be expressed as the form of a perfect fluid. A general coupling was proposed to explain the current accelerating expansion of the Universe and solve the fine-tuning problem.Comment: 5 pages, 1 figure, v2: correct the comment on astro-ph/0509177, v3: significant changes are made to better present the paper;v4: use epl style, add new contents, conclusion remains, accepted for publication by Europhys. Let
    • …
    corecore