21 research outputs found

    Evidence for an Invasive Aphid “Superclone”: Extremely Low Genetic Diversity in Oleander Aphid (Aphis nerii) Populations in the Southern United States

    Get PDF
    The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or "clone") and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species

    Novel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival

    Get PDF
    Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet containing the toxin, resistance to Cry1Ac and to Bt cotton is linked to three cadherin alleles (r1, r2, and r3). In contrast, the BG(4) pink bollworm strain was selected for resistance to Bt cotton by feeding larvae for four days in each of 42 generations on bolls of ‘NuCOTN33B®’ that expressed Cry1Ac toxin. After additional selection for eleven generations on Cry1Ac-incorporated diet, the susceptibility to Cry1Ac, fecundity, egg viability, and mating of this strain (Bt4R) was compared with the unselected Cry1Ac-susceptible parent strain. Some larvae of the Bt4R strain survived on diet containing ≥ 10 µg Cry1Ac per milliliter artificial diet, but none survived on transgenic cotton bolls. In contrast to strains selected exclusively on Cry1Ac diet, some survival of progeny of reciprocal moth crosses of Bt4R resistant and Bt-susceptible strains occurred on Cry1Ac-treated diet, suggesting differences in levels of dominance. The Bt4R resistant strain does not have the r1, r2, or r3 mutant cadherin genes as do all previous strains of pink bollworm selected on Cry1Ac-treated artificial diet. The combined results suggest a mechanism of resistance to Cry1Ac that is different from previously described cadherin mutations

    The influence of metabolically engineered glucosinolates profiles in Arabidopsis thaliana on Plutella xylostella preference and performance

    Get PDF
    The oviposition preference and larval performance of the diamondback moth (DBM), Plutella xylostella, was studied using Arabidopsis thaliana plants with modified glucosinolate (GS) profiles containing novel GSs as a result of the introduction of individual CYP79 genes. The insect parameters were determined in a series of bioassays. The GS content of the plants as well as the number of trichomes were measured. Multivariate analysis was used to determine the possible relationships among insect and plant variables. The novel GSs in the tested lines did not appear to have any unequivocal effect on the DBM. Instead, the plant characteristics that affected larval performance and larval preference did not influence oviposition preference. Trichomes did not affect oviposition, but influenced larval parameters negatively. Although the tested A. thaliana lines had earlier been shown to influence disease resistance, in this study no clear results were found for P. xylostella

    The Genotype Specific Competitive Ability Does Not Correlate with Infection in Natural Daphnia magna Populations

    Get PDF
    Different evolutionary hypotheses predict a correlation between the fitness of a genotype in the absence of infection and the likelihood to become infected. The cost of resistance hypothesis predicts that resistant genotypes pay a cost of being resistant and are less fit in the absence of parasites. The inbreeding-infection hypothesis predicts that the susceptible individuals are less fit due to inbreeding depression.Here we tested if a host's natural infection status was associated with its fitness. First, we experimentally confirmed that cured but formerly infected Daphnia magna are genetically more susceptible to reinfections with Octosporea bayeri than naturally uninfected D. magna. We then collected from each of 22 populations both uninfected and infected D. magna genotypes. All were treated against parasites and kept in their asexual phase. We estimated their relative fitness in an experiment against a tester genotype and in another experiment in direct competition. Consistently, we found no difference in competitive abilities between uninfected and cured but formerly infected genotypes. This was the case both in the presence as well as in the absence of sympatric parasites during the competition trials.Our data do not support the inbreeding-infection hypothesis. They also do not support a cost of resistance, however ignoring other parasite strains or parasite species. We suggest as a possible explanation for our results that resistance genes might segregate largely independently of other fitness associated genes in this system

    Wing Dimorphism in Aphids

    Get PDF
    Many species of insects display dispersing and nondispersing morphs. Among these, aphids are one of the best examples of taxa that have evolved specialized morphs for dispersal versus reproduction. The dispersing morphs typically possess a full set of wings as well as a sensory and reproductive physiology that is adapted to flight and reproducing in a new location. In contrast, the nondispersing morphs are wingless and show adaptations to maximize fecundity. In this review, we provide an overview of the major features of the aphid wing dimorphism. We first provide a description of the dimorphism and an overview of its phylogenetic distribution. We then review what is known about the mechanisms underlying the dimorphism and end by discussing its evolutionary aspects

    Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis

    No full text
    Novel resistance to pathogens and pesticides is commonly associated with a fitness cost. However, measurements of the fitness costs of insecticide resistance have used diverse methods to control for genetic background and rarely assess the effects of environmental variation. Here, we explored how genetic background interacts with resource quality to affect the expression of the fitness costs associated with resistance. We used a serially backcrossed line of the diamondback moth, Plutella xylostella, resistant to the biopesticide Bacillus thuringiensis, to estimate the costs of resistance for insects feeding on two Brassica species. We found that fitness costs increased on the better-defended Brassica oleracea cultivars. These data were included in two meta-analyses of fitness cost experiments that used standardized protocols (and a common resistant insect stock) but which varied in the methodology used to control for the effects of genetic background. The meta-analysis confirmed that fitness costs were higher on the low-quality host (B. oleracea); and experimental methodology did not influence estimates of fitness costs on that plant species. In contrast, fitness costs were heterogeneous in the Brassica pekinensis studies: fitness costs in genetically homogenized lines were significantly higher than in studies using revertant insects. We hypothesize that fitness modifiers can moderate fitness costs on high-quality plants but may not affect fitness when resource quality is low
    corecore