5,941 research outputs found

    The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isoflurane anaesthesia in sheep

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsInfusions of catecholamines are frequently administered to patients receiving propofol or isoflurane anaesthesia. Interactions between these drugs may affect regional circulations, such as the brain. The aim of this animal (sheep) study was to determine the effects of ramped infusions of adrenaline, noradrenaline (10, 20, 40 µg/min) and dopamine (10, 20, 40 µg/kg/min) on cerebral blood flow (CBF), intracranial pressure (ICP), cerebrovascular resistance (CVR) and cerebral metabolic rate for oxygen (CMRO₂). These measurements were made under awake physiological conditions, and during continuous propofol (15 mg/min) or 2% isoflurane anaesthesia. All three catecholamines significantly and equivalently increased mean arterial pressure from baseline in a dose-dependent manner in the three cohorts (P0.05). Under propofol (n=6) and isoflurane (n=6), all three catecholamines significantly increased CBF (P<0.001). Dopamine caused the greatest increase in CBF, and was associated with significant increases in ICP (awake: P<0.001; propofol P<0.05; isoflurane P<0.001) and CVR (isoflurane P<0.05). No significant changes in CMRO₂ were demonstrated. Under propofol and isoflurane anaesthesia, the cerebrovascular effects of catecholamines were significantly different from the awake, physiological state, with dopamine demonstrating the most pronounced effects, particularly under propofol. Dopamine-induced hyperaemia was associated with other cerebrovascular changes. In the presence of an equivalent effect on mean arterial pressure, the exaggerated cerebrovascular effects under anaesthesia appear to be centrally mediated, possibly induced by propofol- or isoflurane-dependent changes in blood-brain barrier permeability, thereby causing a direct influence on the cerebral vasculature.http://www.aaic.net.au/Article.asp?D=200205

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k−1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k−1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page

    Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=kr\nu=\frac{k}{r}

    Full text link
    We compute the physical properties of non-Abelian Fractional Quantum Hall (FQH) states described by Jack polynomials at general filling ν=kr\nu=\frac{k}{r}. For r=2r=2, these states are identical to the ZkZ_k Read-Rezayi parafermions, whereas for r>2r>2 they represent new FQH states. The r=k+1r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9...2/5, 3/7, 4/9.... We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and show that the non-Abelian quasihole has a well-defined propagator falling off with the distance. The clustering properties of the Jack polynomials, provide a strong indication that the states with r>2r>2 can be obtained as correlators of fields of \emph{non-unitary} conformal field theories, but the CFT-FQH connection fails when invoked to compute physical properties such as thermal Hall coefficient or, more importantly, the quasihole propagator. The quasihole wavefuntion, when written as a coherent state representation of Jack polynomials, has an identical structure for \emph{all} non-Abelian states at filling ν=kr\nu=\frac{k}{r}.Comment: 2 figure

    Auger decay, Spin-exchange, and their connection to Bose-Einstein condensation of excitons in Cu_2O

    Full text link
    In view of the recent experiments of O'Hara, et al. on excitons in Cu_2O, we examine the interconversion between the angular-momentum triplet-state excitons and the angular-momentum singlet-state excitons by a spin-exchange process which has been overlooked in the past. We estimate the rate of this particle-conserving mechanism and find a substantially higher value than the Auger process considered so far. Based on this idea, we give a possible explanation of the recent experimental observations, and make certain predictions, with the most important being that the singlet-state excitons in Cu_2O is a very serious candidate for exhibiting the phenomenon of Bose-Einstein condensation.Comment: 4 pages, RevTex, 1 ps figur

    New path description for the M(k+1,2k+3) models and the dual Z_k graded parafermions

    Full text link
    We present a new path description for the states of the non-unitary M(k+1,2k+3) models. This description differs from the one induced by the Forrester-Baxter solution, in terms of configuration sums, of their restricted-solid-on-solid model. The proposed path representation is actually very similar to the one underlying the unitary minimal models M(k+1,k+2), with an analogous Fermi-gas interpretation. This interpretation leads to fermionic expressions for the finitized M(k+1,2k+3) characters, whose infinite-length limit represent new fermionic characters for the irreducible modules. The M(k+1,2k+3) models are also shown to be related to the Z_k graded parafermions via a (q to 1/q) duality transformation.Comment: 43 pages (minor typo corrected and minor rewording in the introduction

    Strong Enhancement of Superconducting Correlation in a Two-Component Fermion Gas

    Full text link
    We study high-density electron-hole (e-h) systems with the electron density slightly larger than the hole density. We find a new superconducting phase, in which the excess electrons form Cooper pairs moving in an e-h BCS phase. The coexistence of the e-h and e-e orders is possible because e and h have opposite charges, whereas analogous phases are impossible in the case of two fermion species that have the same charge or are neutral. Most strikingly, the e-h order enhances the superconducting e-h order parameter by more than one order of magnitude as compared with that given by the BCS formula, for the same value of the effective e-e attractive potential \lambda^{ee}. This new phase should be observable in an e-h system created by photoexcitation in doped semiconductors at low temperatures.Comment: 5 pages including 5 PostScript figure
    • …
    corecore