151 research outputs found

    Sex- and age-related differences in the contribution of ultrasound-measured visceral and subcutaneous abdominal fat to fatty liver index in overweight and obese Caucasian adults

    Get PDF
    Differences in body fat distribution may be a reason for the sex-, age-, and ethnicity-related differences in the prevalence of fatty liver disease (FL). This study aimed to evaluate the sex- and age-related differences in the contribution of visceral (VAT) and subcutaneous (SAT) abdominal fat, measured by ultrasound, to fatty liver index (FLI) in a large sample of overweight and obese Caucasian adults, and to identify the VAT and SAT cut-off values predictive of high FL risk. A cross-sectional study on 8103 subjects was conducted. Anthropometrical measurements were taken and biochemical parameters measured. VAT and SAT were measured by ultrasonography. FLI was higher in men and increased with increasing age, VAT, and SAT. The sex*VAT, age*VAT, sex*SAT, and age*SAT interactions negatively contributed to FLI, indicating a lower VAT and SAT contribution to FLI in men and in the elderly for every 1 cm of increment. Because of this, sex- and age-specific cut-off values for VAT and SAT were estimated. In conclusion, abdominal adipose tissue depots are associated with FLI, but their contribution is sex- and age-dependent. Sex- and age-specific cut-off values of ultrasound-measured VAT and SAT are suggested, but they need to be validated in external populations

    Targeted expression of human FSH receptor Asp567Gly mutant mRNA in testis of transgenic mice: role of the human FSH receptor promoter.

    Get PDF
    AIM: To specifically express the Asp567Gly human follicle-stimulating hormone receptor (FSHR) under the control of its promoter to evaluate the phenotypic consequences in the presence of normal pituitary function. METHODS: We produced transgenic mice overexpressing the Asp567Gly human FSHR under the control of a 1.5kb 5'-flanking region fragment of its promoter. RESULTS: Mice were phenotypically normal and fertile. In males, mRNA could be detected in the testis and the brain, indicating that the 1.5kb promoter fragment drives expression not only in the gonads. The testis weight/body weight ratio and the testosterone levels in transgenic and non-transgenic littermates were similar. By in situ hybridisation we found that the transgenic FSHR was highly expressed in Sertoli cells, spermatocytes and round spermatids. However, a radioligand receptor assay failed to show a significant difference in total FSHR binding sites in testis homogenates of transgenic and wild type animals, suggesting that the transgenic FSHR is probably not translated into functional receptor protein. CONCLUSION: A 1.5kb 5'-region of the human FSHR drives mRNA expression of the transgene in the testis but leads to ectopic expression in germ cells and in the brain. No phenotypic consequences could be documented due to the lack of protein expression

    Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm

    Full text link
    Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of the performance of the Weighted Center of Gravity algorithm for centroiding with elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture.Comment: 10 pages, 14 figure

    Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors

    Get PDF
    Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). Results: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. Conclusion: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications

    Microfragmented adipose tissue is associated with improved ex vivo performance linked to HOXB7 and b-FGF expression

    Get PDF
    Introduction: Adipose tissue (AT) has become a source of mesenchymal stromal/stem cells (MSC) for regenerative medicine applications, in particular skeletal disorders. Several enzymatic or mechanical procedures have been proposed to process AT with the aim to isolate cells that can be locally implanted. How AT is processed may impact its properties. Thus, we compared AT processed by centrifugation (C-AT) to microfragmentation (MF-AT). Focusing on MF-AT, we subsequently assessed the impact of synovial fluid (SF) alone on both MF-AT and isolated AT-MSC to better understand their cartilage repair mechanisms. Materials and methods: MF-AT and C-AT from the same donors were compared by histology and qRT-PCR immediately after isolation or as ex vivo cultures using a micro-tissue pellet system. The in vitro impact of SF on MF-AT and AT-MSC was assessed by histological staining and molecular analysis. Results: The main AT histological features (i.e., increased extracellular matrix and cellularity) of the freshly isolated or ex vivo-cultured MF-AT persisted compared to C-AT, which rapidly deteriorated during culture. Based on our previous studies of HOX genes in MSC, we investigated the involvement of Homeobox Protein HOX-B7 (HOXB7) and its target basic Fibroblast Growth Factor (bFGF) in the molecular mechanism underlying the improved performance of MF-AT. Indeed, both these biomarkers were more prominent in freshly isolated MF-AT compared to C-AT. SF alone preserved the AT histological features of MF-AT, together with HOXB7 and bFGF expression. Increased cell performance was also observed in isolated AT-MSC after SF treatment concomitant with enhanced HOXB7 expression, although there was no apparent association with bFGF. Conclusions: Our findings show that MF has a positive effect on the maintenance of AT histology and may trigger the expression of trophic factors that improve tissue repair by processed AT

    Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?

    Get PDF
    The inaccuracy of resting energy expenditure (REE) prediction formulae to calculate energy metabolism in children may lead to either under- or overestimated real caloric needs with clinical consequences. The aim of this paper was to apply artificial neural networks algorithms (ANNs) to REE prediction. We enrolled 561 healthy children (2-17 years). Nutritional status was classified according to World Health Organization (WHO) criteria, and 113 were obese. REE was measured using indirect calorimetry and estimated with WHO, Harris-Benedict, Schofield, and Oxford formulae. The ANNs considered specific anthropometric data to model REE. The mean absolute error (mean \ub1 SD) of the prediction was 95.8 \ub1 80.8 and was strongly correlated with REE values (R2 = 0.88). The performance of ANNs was higher in the subgroup of obese children (101 \ub1 91.8) with a lower grade of imprecision (5.4%). ANNs as a novel approach may give valuable information regarding energy requirements and weight management in children

    First demonstration of O (1 ns) timing resolution in the MicroBooNE liquid argon time projection chamber

    Get PDF
    MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns). The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE
    • …
    corecore