6 research outputs found

    Effect Of Grinding And Soaking On The Reduction Of Cyanogenic Compounds In The Albedo Of Yellow Passion Fruit [efeito Da Trituração E Imersão Em água Na Redução Dos Compostos Cianogênicos Do Albedo De Maracujá Amarelo]

    No full text
    The importance of the functional compounds present in some plant residues has increased the amount of research on their use in human feeding. Brazil is the largest World producer of passion fruit, mainly yellow variety (Passiflora edulis Sims f. flavicarpa Degener), annually producing about 478 thousand tonnes, mostly used for fresh consumption and juice production. The albedo represents from 12% to 32% by weight of the mature yellow passion fruit, containing about 20% pectin (soluble fibre) on a dry weight basis, but has cyanogenic compounds, such as prunasin, amigdalin and sambunigrin. The objective of this research was to evaluate the effect of grinding and of soaking in water on the reduction of cyanogenic compounds in yellow passion fruit albedo. Yellow passion fruits were obtained from a commercial producer with at least 85% of the skin already yellow. The effect of grinding was evaluated using three particle sizes, and the effect of soaking in water (proportion 1:3) evaluated for 6 days (144 h) at room temperature (average temperature 28.5°C). The contents of total cyanogenic compounds (TCC), cyanogenic glycosides (CG) and non-glycosidic cyanogenic compounds (NGCC) were determined. The soaking process of the albedo causes parcial losses of the cyanogenic glycosides, however, despite the significant effect of the soaking time, TCC and CG contents remained high. Under the conditions of the experiment, very limited action by the microbial flora was observed and virtually none by the endogenous enzymes in the degradation of the cyanogenic glycosides throughout the immersion period, independent of albedo particle size.1816369(2000) Official Methods of Analysis 17.Ed., , Arlington: AOACBainbridge, Z., Harding, S., French, L., Kapinga, R., Westby, A., A study of the role of tissue disruption in the removal of cyanogens during cassava root processing (1998) Food Chemistry, 62 (3), pp. 291-297Bolhuis, G.G., The toxicity of cassava roots (1954) Netherlands Journal of Agricultural Science, 2, pp. 176-185Bradbury, J.H., Bradbury, M.G., Egan, S.V., Comparison of methods of analysis of cyanogens in cassava (1994) Acta Horticulturae, 375, pp. 87-96Brimer, L., Tunçel, G., Nout, M.J.R., Simple screening procedure for microorganisms to degrade amygdalin (1993) Biotechnology Techniques, 7, pp. 683-687Cardoso, C.E.L., Souza, J.S., Lima, A.A., Coelho, E.F., Aspectos econômicos (1999) O Cultivo Do Maracujá, pp. 109-117. , LIMA, A. A. (ed.). Cruz das Almas: Embrapa Mandioca e FruticulturaChassagne, D., Crouzet, J., A cyanogenic glycoside from Passiflora edulis fruits (1998) Phytochemistry, 49 (3), pp. 757-759Chassagne, D., Crouzet, J.C., Bayonove, C.L., Baumes, R.L., Identification and quantification of passion fruit cyanogenic glycosides (1996) Journal of Agricultural and Food Chemistry, 44 (12), pp. 3817-3820(1988) Report of the Eighth Session of the Codex Coordinating Committee for Africa, , Cairo: FAO/WHODufour, D.L., Cassava in Amazonia: Lessons in utilization and safety from native peoples (1994) Acta Horticulturae, 375, pp. 175-182. , Wageningen, novemberGomes, F.P., (1987) A Estatística Moderna Na Pesquisa Agropecuária. 3.Ed., p. 162. , Piracicaba: PotafosProdução Agrícola Municipal, , http://www.ibge.gov.brKimball, L.B., Kertesz, Z.I., Pratical determination of size distribuition of suspended particles in macerated tomato products (1952) Food Technology, 6 (2), pp. 68-71Lima, A.A., Cunha, M.A.P., (2004) Produção e Qualidade Na Passicultura, p. 396. , Cruz das Almas: Embrapa Mandioca e FruticulturaDe Lima, D.C., Extração da pectina do maracujá (1971) Coletânea Do ITAL, 4, pp. 63-69Lipitoa, S., Robertson, G.L., The enzymatic extraction of juice from yellow passion fruit pulp (1977) Tropical Science, 19 (2), pp. 105-112Machado, S.S., Cardoso, R.L., Matsuura, F.C.A.U., Folegatti, M.I.S., Caracterizaçáo física e físico-química de frutos de maracujá amarelo provenientes da região de Jaguaquara, Bahia (2003) Magistra, 15 (2), pp. 229-233Midio, A.F., Martins, D.I., (2000) Toxicologia de Alimentos, p. 295. , São Paulo: Livraria VarelaMlingi, N.V., Assey, V.D., Swai, A.B.M., Mclarty, D.G., Karlen, H., Rosling, H., Cyanide exposure from cassava consumption in northern Tanzania (1993) International Journal of Food Science and Nutrition, 44, pp. 137-144Moran, E.A., Cyanogenetic compounds in plants and their significance in animal industry (1954) American Journal of Veterinary Research, 15 (54), pp. 171-176Nambisan, B., Sundaresan, S., Effect of processing on the cyanoglucosides in cassava (1985) Journal of the Science of Food and Agriculture, 36, pp. 1197-1203Nout, M.J.R., Tunçel, G., Brimer, L., Microbial degradation of amygdalin of bitter apricot seeds (Prunus armeniaca) (1995) International Journal of Food Microbiology, 24 (3), pp. 407-412Oke, O.L., Eliminating cyanogens from cassava through processing: Technology and tradition (1994) Acta Horticulture, 375, pp. 163-174Pontes, M.A.N., Holanda, L.F.F., Oriá, H.F., Barroso, M.A.T., Estudo dos subprodutos do maracujá (Passiflora edulis f. flavicarpa, Degener). I - Características físico-químicas das cascas e sementes (1986) Boletim Do CEPPA, 4 (2), pp. 32-39Poulton, J.E., Cyanogenesis in plants (1990) Plant Physiology, 94, pp. 401-405Reiser, S., Metabolic effects of dietary pectins related to human health (1987) Food Technology, 41 (2), pp. 91-99Saenz, J.A., Nassar, M., Toxic effect of the fruit of Passiflora adenopoda D. C. on humans: Phytochemical determination (1972) Revista de Biologia Tropical, 20 (1), pp. 137-140Scheneeman, B.O., Dietary Fiber: Physical and chemical properties, methods of analysis and physiological effects (1986) Food Technology, 40 (2), pp. 104-110Sjostrom, G., Rosa, J.L.L., Estudos sobre as características físicas e composição química do maracujá amarelo cultivado no município de Entre Rios-BA (1977) Anais..., pp. 265-273. , Congresso Brasileiro de Fruticultura, 4, 1977. Salvador. Salvador: Sociedade Brasileira de FruticulturaSpencer, K.C., Seigler, D.S., Cyanogenesis of Passiflora edulis (1983) Journal of Agricultural and Food Chemistry, 31 (4), pp. 794-796Stark, A., Madar, Z., Dietary fiber (1994) Functional Foods, pp. 183-201. , GOLDBERG, I. (ed.). New York: Chapman & HallTunçel, G., Nout, M.J.R., Brimer, L., The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds (1995) Food Chemistry, 53, pp. 447-451Tunçel, G., Nout, M.J.R., Brimer, L., Degradation of cyanogenic glycosides of bitter apricot seeds (Prunus armeniaca) by endogenous and added enzymes as affected by heat treatments and particle size (1998) Food Chemistry, 63 (1), pp. 65-69Vetter, J., Plant cyanogenic glycosides (2000) Toxicon, 38, pp. 11-36Westby, A., Choo, B.K., Cyanogen reduction during lactic fermentation of cassava (1994) Acta Horticulturae, Wageningen, 375, pp. 209-21

    Determination of thermal diffusivity in papaya pulp as a function of maturation stage Determinação da difusividade térmica da polpa de mamão em função do estádio de maturação

    No full text
    In order to determine the penetration of the thermal wave in the papaya fruit pulp (Carica papaya L.), cv. Golden, thermal diffusivity of the pulp was obtained measuring temperature at four different depths. Measurements were carried out initially with the fruit on the first stage of maturity. The changes of the thermal diffusivity were expressed as a function of ripening. A temporal decrease of the thermal diffusivity was observed. Chemical (pH, soluble solids and total titratable acidity) and physical (pulp firmness) properties were measured as well and the results were compared to the thermal diffusivity change.<br>Para determinar a penetração da onda térmica na polpa do fruto do mamoeiro (Carica papaya L.), cv. Golden, a difusividade térmica foi obtida medindo a temperatura da polpa em quatro diferentes profundidades. As medidas foram realizadas inicialmente no estádio I de maturação do fruto, e as variações da difusividade térmica foram expressas em função do amadurecimento. Foi observada a diminuição da difusividade térmica no tempo. Propriedades químicas (pH, sólidos solúveis e acidez titulável) e física (firmeza da polpa) também foram determinadas, e os resultados, comparados com as variações da difusividade térmica
    corecore