110 research outputs found

    Frontier Mountain meteorite specimens of the acapulcoite‐lodranite clan: Petrography, pairing, and parent‐rock lithology of an unusual intrusive rock

    Get PDF
    Abstract— In this paper we reconstruct the heterogeneous lithology of an unusual intrusive rock from the acapulcoite‐lodranite (AL) parent asteroid on the basis of the petrographic analysis of 5 small (<8.3 g) meteorite specimens from the Frontier Mountain ice field (Antarctica). Although these individual specimens may not be representative of the parent‐rock lithology due to their relatively large grain size, by putting together evidence from various thin sections and literature data we conclude that Frontier Mountain (FRO) 90011, FRO 93001, FRO 99030, and FRO 03001 are paired fragments of a medium‐ to coarse‐grained igneous rock which intrudes a lodranite and entrains xenoliths. The igneous matrix is composed of enstatite (Fs13.3 ± 0.4 Wo3.1 ± 0.2), Cr‐rich augite (Fs6.1 ± 0.7 Wo42.3 ± 0.9), and oligoclase (Ab80.5 ± 3.3 Or3.2 ± 0.6). The lodranitic xenoliths show a fine‐grained (average grain size 488 ± 201 μm) granoblastic texture and consist of olivine Fa9.5 ± 0.4 and Fe,Ni metal and minor amounts of enstatite Fs12.7 ± 0.4 Wo1.8 ± 0.1, troilite, chromite, schreibersite, and Ca‐phosphates. Crystals of the igneous matrix and lodranitic xenoliths are devoid of shock features down to the scanning electron microscope scale. From a petrogenetic point of view, the lack of shock evidence in the lodranitic xenoliths of all the studied samples favors the magmatic rather than the impact melting origin of this rock.FRO 95029 is an acapulcoite and represents a separate fall from the AL parent asteroid, i.e., it is not a different clast entrained by the FRO 90011, FRO 93001, FRO 99030, and FRO 03001 melt, as in genomict breccias common in the meteoritic record. The specimen‐to‐meteorite ratio for the AL meteorites so far found at Frontier Mountain is thus 2.5

    The Thermal Decomposition of Fine-grained Micrometeorites, Observations from Mid-IR Spectroscopy

    Get PDF
    We analysed 44 fine-grained and scoriaceous micrometeorites. A bulk mid-IR spectrum (8–13 lm) for each grain was collected and the entire micrometeorite population classified into 5 spectral groups, based on the positions of their absorption bands. Corresponding carbonaceous Raman spectra, textural observations from SEM-BSE and bulk geochemical data via EMPA were collected to aid in the interpretation of mid-IR spectra. The 5 spectral groups identified correspond to progressive thermal decomposition. Unheated hydrated chondritic matrix, composed predominantly of phyllosilicates, exhibit smooth, asymmetric spectra with a peak at 10 lm. Thermal decomposition of sheet silicates evolves through dehydration, dehydroxylation, annealing and finally by the onset of partial melting. Both CI-like and CM-like micrometeorites are shown to pass through the same decomposition stages and produce similar mid-IR spectra. Using known temperature thresholds for each decomposition stage it is possible to assign a peak temperature range to a given micrometeorite. Since the temperature thresholds for decomposition reactions are defined by the phyllosilicate species and the cation composition and that these variables are markedly different between CM and CI classes, atmospheric entry should bias the dust flux to favour the survival of CIlike grains, whilst preferentially melting most CM-like dust. However, this hypothesis is inconsistent with empirical observations and instead requires that the source ratio of CI:CM dust is heavily skewed in favour of CM material. In addition, a small population of anomalous grains are identified whose carbonaceous and petrographic characteristics suggest in-space heating and dehydroxylation have occurred. These grains may therefore represent regolith micrometeorites derived from the surface of C-type asteroids. Since the spectroscopic signatures of dehydroxylates are distinctive, i.e. characterised by a reflectance peak at 9.0–9.5 lm, and since the surfaces of C-type asteroids are expected to be heated via impact gardening, we suggest that future spectroscopic investigations should attempt to identify dehydroxylate signatures in the reflectance spectra of young carbonaceous asteroid families

    The Asco meteorite (1805): New petrographic description, chemical data, and classification

    Get PDF
    Abstract— We present magnetic measurements, chemical analyses, and petrographic observations of the poorly studied Asco historical meteorite fall (1805). These new data indicate that this meteorite has been previously misclassified as an L6 ordinary chondrite. Asco is reclassified as an H6 ordinary chondrite with shock stage S3. An interesting feature of this meteorite is the presence of chromite‐plagioclase assemblages with variable textures
    corecore