5,718 research outputs found

    Arsenic precipitation by an anaerobic arsenic-respiring bacterial strain isolated from the polluted sediments of Orbetello Lagoon, Italy

    Get PDF
    AIMS: To isolate and characterize an anaerobic bacterial strain from the deeper polluted lagoon sediment able to use as electron acceptors [As(V)] and sulfate (SO4(2-)), using lactate as an electron donor. METHODS AND RESULTS: Methods for isolation from polluted lagoon sediments included anaerobic enrichment cultures in the presence of As(V) and SO4(2-). Reduction of As(V) to As(III) was observed during the growth of the bacterial strain, and the final concentration of As(III) was lower than the initial As(V) one, suggesting the immobilization of As(III) in the yellow precipitate. The precipitate was identified by energy dispersive spectroscopy X-ray as arsenic sulfide. Scanning electron microscopy (SEM) revealed rod-shaped bacterial cells embedded in the precipitate, where net-like formations strictly related to the bacterial cells were visible. The surface of the precipitate showed the adhesion of bacterial cells, forming clusters. Transmission electron microscopy (TEM) also highlighted precipitates inside the bacterial cells and on their surface. Following 16S rRNA sequencing, the bacterial strain 063 was assigned to the genus Desulfosporosinus. CONCLUSIONS: This study reports, for the first time, the isolation from the polluted lagoon sediments of a strain capable of respiring and using As(V) and SO4(2-) as electron acceptors with lactate as the sole carbon and energy source with the formation of an arsenic sulfide precipitate. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of these properties provides novel insight into the possible use of the anaerobic strain in bioremediation processes and also adds to the knowledge on the biogeochemical cycling of arsenic

    Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization

    Get PDF
    AIMS: The aim of this study was to isolate arsenic-resistant bacteria from contaminated sediment of the Orbetello Lagoon, Italy, to characterize isolates for As(III), As(V), heavy metals resistance, and from the phylogenetic point of view. METHODS AND RESULTS: Enrichment cultures were carried out in the presence of 6.75 mmol l(-1) of As(III), allowing isolation of ten bacterial strains. Four isolates, ORAs1, ORAs2, ORAs5 and ORAs6, showed minimum inhibitory concentration values equal or superior to 16.68 mmol l(-1) and 133.47 mmol l(-1) in the presence of As(III) and As(V), respectively. Isolate ORAs2 showed values of 1.8 mmol l(-1) in the presence of Cd(II) and 7.7 mmol l(-1) of Zn(II), and isolate ORAs1 pointed out a value of 8.0 mmol l(-1) in the presence of Cu(II). Analysis of 16S rRNA gene sequences revealed that they can be grouped in the three genera Aeromonas, Bacillus and Pseudomonas. Phylogenetic analysis of the four more arsenic-resistant strains was also performed. CONCLUSION: Isolates are highly resistant to both As(III) and As(V) and they could represent good candidates for bioremediation processes of native polluted sediments. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides original results on levels of resistance to arsenic and to assigning genera of bacterial strains isolated from arsenic-polluted sediments

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ\mum, to 11.0 μ\mum. The baseline design includes the goal wavelength extension to 0.4 μ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 μ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    A logarithmic epiperimetric inequality for the obstacle problem

    Full text link
    For the general obstacle problem, we prove by direct methods an epiperimetric inequality at regular and singular points, thus answering a question of Weiss (Invent. Math., 138 (1999), 23--50). In particular at singular points we introduce a new tool, which we call logarithmic epiperimetric inequality, which yields an explicit logarithmic modulus of continuity on the C1C^1 regularity of the singular set, thus improving previous results of Caffarelli and Monneau

    Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants

    Get PDF
    Two bacterial strains were isolated in the presence of naphthalene as the sole carbon and energy source from sediments of the Orbetello Lagoon, Italy, which is highly contaminated with both organic compounds and metals. 16S rRNA gene sequence analysis of the two isolates assigned the strains to the genera Paenibacillus and Pseudomonas. The effect of different contaminants on the growth behaviors of the two strains was investigated. Pseudomonas sp. ORNaP2 showed a higher tolerance to benzene, toluene, and ethylbenzene than Paenibacillus sp. ORNaP1. In addition, the toxicity of heavy metals potentially present as co-pollutants in the investigated site was tested. Here, strain Paenibacillus sp. ORNaP1 showed a higher tolerance towards arsenic, cadmium, and lead, whereas it was far more sensitive towards mercury than strain Pseudomonas sp. ORNaP2. These differences between the Gram-negative Pseudomonas and the Gram-positive Paenibacillus strain can be explained by different general adaptive response systems present in the two bacteria

    Model-driven Information Flow Security for Component-Based Systems

    No full text
    International audienceThis paper proposes a formal framework for studying information flow security in component-based systems. The security policy is defined and verified from the early steps of the system design. Two kinds of non-interference properties are formally introduced and for both of them, sufficient conditions that ensures and simplifies the automated verification are proposed. The verification is compositional, first locally, by checking the behavior of every atomic component and then globally, by checking the inter-components communication and coordination. The potential benefits are illustrated on a concrete case study about constructing secure heterogeneous distributed systems

    Star-density Profiles of Six Old Star Clusters in the Large Magellanic Cloud

    Get PDF
    We used resolved star counts from Hubble Space Telescope (HST) images to determine the center of gravity and the projected density profiles of six old globular clusters (GCs) in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2257, and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more dal 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similar to what was observed for Galactic GCs, the ratio between the effective and the core radius has been found to anticorrelate with the cluster dynamical age

    Star density profiles of six old star clusters in the Large Magellanic Cloud

    Get PDF
    We used resolved star counts from Hubble Space Telescope images to determine the center of gravity and the projected density profiles of 6 old globular clusters in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2257 and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more than 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similarly to what observed for Galactic globular clusters, the ratio between the effective and the core radii has been found to anti-correlate with the cluster dynamical age.Comment: 15 pages, 12 figures, in press on the Ap

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017
    corecore