35 research outputs found

    Synaptic Proteins Linked to HIV-1 Infection and Immunoproteasome Induction: Proteomic Analysis of Human Synaptosomes

    Get PDF
    Infection of the central nervous system with human immunodeficiency virus type 1 (HIV-1) can produce morphological changes in the neocortical synaptodendritic arbor that are correlated with neurocognitive impairment. To determine whether HIV-1 infection influences the protein composition of human synapses, a proteomic study of isolated nerve endings was undertaken. Synaptosomes from frontal neocortex were isolated using isopyknic centrifugation from 19 human brain specimens. Purity and enrichment were assessed by measuring pre- and postsynaptic protein markers. Two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to screen for proteins differentially expressed in HIV/AIDS. The concentrations of 31 candidate protein spots were potentially abnormal in HIV-infected decedents with HIV encephalitis and/or increased expression of immunoproteasome subunits. Immunoblots showed that the concentration of some of them was related to HIV-1 infection of the brain and immunoproteasome (IPS) induction. Synapsin 1b and stathmin were inversely related to brain HIV-1 load; 14-3-3ζ and 14-4-4ε proteins were higher in subjects with HIV-1 loads. Perturbed synaptosome proteins were linked with IPS subunit composition, and 14-3-3ζ was histologically colocalized with IPS subunits in stained neocortical neurons. Proteomics illustrates that certain human proteins within the synaptic compartment are involved with changes in the synaptodendritic arbor and neurocognitive impairment in HIV-1-infected people

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention

    Four Decades of Andean Timberline Migration and Implications for Biodiversity Loss with Climate Change

    Get PDF
    Rapid 21st-century climate change may lead to large population decreases and extinction in tropical montane cloud forest species in the Andes. While prior research has focused on species migrations per se, ecotones may respond to different environmental factors than species. Even if species can migrate in response to climate change, if ecotones do not they can function as hard barriers to species migrations, making ecotone migrations central to understanding species persistence under scenarios of climate change. We examined a 42-year span of aerial photographs and high resolution satellite imagery to calculate migration rates of timberline–the grassland-forest ecotone–inside and outside of protected areas in the high Peruvian Andes. We found that timberline in protected areas was more likely to migrate upward in elevation than in areas with frequent cattle grazing and fire. However, rates in both protected (0.24 m yr(−1)) and unprotected (0.05 m yr(−1)) areas are only 0.5–2.3% of the rates needed to stay in equilibrium with projected climate by 2100. These ecotone migration rates are 12.5 to 110 times slower than the observed species migration rates within the same forest, suggesting a barrier to migration for mid- and high-elevation species. We anticipate that the ecotone will be a hard barrier to migration under future climate change, leading to drastic population and biodiversity losses in the region unless intensive management steps are taken

    Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD − phenotype in C. glutamicum: the issue of reversibility re-examined

    No full text
    International audienceThe ldh gene of Corynebacterium glutamicum ATCC 13032 (gene symbol cg3219, encoding a 314 residue NAD+-dependent L-(+)-lactate dehydrogenase, EC 1.1.1.27) was cloned into the expression vector pKK388-1 and over-expressed in an ldhA-null E. coli TG1 strain upon isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The recombinant protein (referred to here as CgLDH) was purified by a combination of dye-ligand and ion-exchange chromatography. Though active in its absence, CgLDH activity is enhanced 17- to 20-fold in the presence of the allosteric activator D-fructose-1,6-bisphosphate (Fru-1,6-P2). Contrary to a previous report, CgLDH has readily measurable reaction rates in both directions, with Vmax for the reduction of pyruvate being approximately tenfold that of the value for L-lactate oxidation at pH 7.5. No deviation from Michaelis-Menten kinetics was observed in the presence of Fru-1,6-P2, while a sigmoidal response (indicative of positive cooperativity) was seen towards L-lactate without Fru-1,6-P2. Strikingly, when introduced into an lldD- strain of C. glutamicum, constitutively expressed CgLDH enables the organism to grow on L-lactate as the sole carbon source
    corecore