34 research outputs found

    Synaptic Proteins Linked to HIV-1 Infection and Immunoproteasome Induction: Proteomic Analysis of Human Synaptosomes

    Get PDF
    Infection of the central nervous system with human immunodeficiency virus type 1 (HIV-1) can produce morphological changes in the neocortical synaptodendritic arbor that are correlated with neurocognitive impairment. To determine whether HIV-1 infection influences the protein composition of human synapses, a proteomic study of isolated nerve endings was undertaken. Synaptosomes from frontal neocortex were isolated using isopyknic centrifugation from 19 human brain specimens. Purity and enrichment were assessed by measuring pre- and postsynaptic protein markers. Two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to screen for proteins differentially expressed in HIV/AIDS. The concentrations of 31 candidate protein spots were potentially abnormal in HIV-infected decedents with HIV encephalitis and/or increased expression of immunoproteasome subunits. Immunoblots showed that the concentration of some of them was related to HIV-1 infection of the brain and immunoproteasome (IPS) induction. Synapsin 1b and stathmin were inversely related to brain HIV-1 load; 14-3-3ζ and 14-4-4ε proteins were higher in subjects with HIV-1 loads. Perturbed synaptosome proteins were linked with IPS subunit composition, and 14-3-3ζ was histologically colocalized with IPS subunits in stained neocortical neurons. Proteomics illustrates that certain human proteins within the synaptic compartment are involved with changes in the synaptodendritic arbor and neurocognitive impairment in HIV-1-infected people

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention

    Recent applications of mineral magnetic methods in sediment pollution studies : a review

    No full text
    This paper reviews recent progress in applying mineral magnetic methods in sediment pollution studies. Such applications include its use as a dating marker, as a proxy for heavy metal concentrations and to trace metal pollutant dispersal. The mineral magnetic method has been found to be a promising tool in a wide range of sediment metal pollution studies. However, its use as a proxy of heavy metal concentrations is not always straightforward. This reflects the potentially mixed origins of magnetic minerals in sediments which may have an anthropogenic, natural or mixed source. Furthermore, anthropogenic magnetic particles may not have a common source with heavy metals. The possible linkage between magnetic minerals and heavy metals is discussed. The role of sorting, sorption/desorption and post-depositional diagenesis on the magnetic mineral-heavy metal linkage is highlighted as still requiring careful consideration. It is suggested that detailed characterisation of magnetic mineralogy using combined magnetic, geochemical and mineralogical methods is critical to the optimization of sediment pollution studies using a mineral magnetic approach
    corecore