539 research outputs found

    MRI based preterm white matter injury classification: the importance of sequential imaging in determining severity of injury

    Get PDF
    The evolution of non-hemorrhagic white matter injury (WMI) based on sequential magnetic resonance imaging (MRI) has not been well studied. Our aim was to describe sequential MRI findings in preterm infants with non-hemorrhagic WMI and to develop an MRI classification system for preterm WMI based on these findings.Eighty-two preterm infants (gestation ≤35 weeks) were retrospectively included. WMI was diagnosed and classified based on sequential cranial ultrasound (cUS) and confirmed on MRI.138 MRIs were obtained at three time-points: early (<2 weeks; n = 32), mid (2-6 weeks; n = 30) and term equivalent age (TEA; n = 76). 63 infants (77%) had 2 MRIs during the neonatal period. WMI was non-cystic in 35 and cystic in 47 infants. In infants with cystic-WMI early MRI showed extensive restricted diffusion abnormalities, cysts were already present in 3 infants; mid MRI showed focal or extensive cysts, without acute diffusion changes. A significant reduction in the size and/or extent of the cysts was observed in 32% of the infants between early/mid and TEA MRI. In 4/9 infants previously seen focal cysts were no longer identified at TEA. All infants with cystic WMI showed ≥2 additional findings at TEA: significant reduction in WM volume, mild-moderate irregular ventriculomegaly, several areas of increased signal intensity on T1-weighted-images, abnormal myelination of the PLIC, small thalami.In infants with extensive WM cysts at 2-6 weeks, cysts may be reduced in number or may even no longer be seen at TEA. A single MRI at TEA, without taking sequential cUS data and pre-TEA MRI findings into account, may underestimate the extent of WMI; based on these results we propose a new MRI classification for preterm non-hemorrhagic WMI

    Mammillary body abnormalities and cognitive outcomes in children cooled for neonatal encephalopathy

    Get PDF
    Aim: To evaluate mammillary body abnormalities in school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal hypoxic–ischaemic encephalopathy (cases) and matched controls, and associations with cognitive outcome, hippocampal volume, and diffusivity in the mammillothalamic tract (MTT) and fornix. Method: Mammillary body abnormalities were scored from T1-weighted magnetic resonance imaging (MRI) in 32 cases and 35 controls (median age [interquartile range] 7 years [6 years 7 months–7 years 7 months] and 7 years 4 months [6 years 7 months–7 years 7 months] respectively). Cognition was assessed using the Wechsler Intelligence Scale for Children, Fourth Edition. Hippocampal volume (normalized by total brain volume) was measured from T1-weighted MRI. Radial diffusivity and fractional anisotropy were measured in the MTT and fornix, from diffusion-weighted MRI using deterministic tractography. Results: More cases than controls had mammillary body abnormalities (34% vs 0%; p < 0.001). Cases with abnormal mammillary bodies had lower processing speed (p = 0.016) and full-scale IQ (p = 0.028) than cases without abnormal mammillary bodies, and lower scores than controls in all cognitive domains (p < 0.05). Cases with abnormal mammillary bodies had smaller hippocampi (left p = 0.016; right p = 0.004) and increased radial diffusivity in the right MTT (p = 0.004) compared with cases without mammillary body abnormalities. Interpretation: Cooled children with mammillary body abnormalities at school-age have reduced cognitive scores, smaller hippocampi, and altered MTT microstructure compared with those without mammillary body abnormalities, and matched controls

    Does Cognitive Impairment Explain Behavioral and Social Problems of Children with Neurofibromatosis Type 1?

    Get PDF
    Thirty NF1-patients (mean age 11.7 years, SD = 3.3) and 30 healthy controls (mean age 12.5 years, SD = 3.1) were assessed on social skills, autistic traits, hyperactivity-inattention, emotional problems, conduct problems, and peer problems. Cognitive control, information processing speed, and social information processing were measured using 5 computer tasks. GLM analyses of variance showed significant group differences, to the disadvantage of NF1-patients, on all measures of behavior, social functioning and cognition. General cognitive ability (a composite score of processing speed, social information processing, and cognitive control) accounted for group differences in emotional problems, whereas social information processing accounted for group differences in conduct problems. Although reductions were observed for group differences in other aspects of behavior and social functioning after control for (specific) cognitive abilities, group differences remained evident. Training of cognitive abilities may help reducing certain social and behavioral problems of children with NF1, but further refinement regarding associations between specific aspects of cognition and specific social and behavioral outcomes is required

    A phase I study with MAG-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours

    Get PDF
    In MAG-camptothecin (MAG-CPT), the topoisomerase inhibitor camptothecin is linked to a water-soluble polymer. Preclinical experiments showed enhanced antitumour efficacy and limited toxicity compared to camptothecin alone. Prior phase I trials guided the regimen used in this study. The objectives were to determine the maximum tolerated dose, dose-limiting toxicities, safety profile, and pharmacokinetics of weekly MAG-CPT. Patients with solid tumours received MAG-CPT intravenously administered weekly for 3 weeks in 4-week cycles. At the starting dose level ( 80 mg m(-2) week(-1)), no dose-limiting toxicities occurred during the first cycle (n = 3). Subsequently, three patients were enrolled at the second dose level ( 120 mg m(-2) week(-1)). Two of three patients at the 80 mg m(-2) week(-1) cohort developed haemorrhagic cystitis ( grade 1/3 dysuria and grade 2/3 haematuria) during the second and third cycles. Next, the 80 mg m(-2) week(-1) cohort was enlarged to a total of six patients. One other patient at this dose level experienced grade 1 haematuria. At 120 mg m(-2) week(-1), grade 1 bladder toxicity occurred in two of three patients. Dose escalation was stopped at 120 mg m(-2) week(-1). Cumulative bladder toxicity was dose-limiting toxicity at 80 mg m(-2) week(-1). Pharmacokinetics revealed highly variable urinary camptothecin excretion, associated with bladder toxicity. Due to cumulative bladder toxicity, weekly MAG-CPT is not a suitable regimen for treatment of patients with solid tumours

    A New Perspective on Transcriptional System Regulation (TSR): Towards TSR Profiling

    Get PDF
    It has been hypothesized that the net expression of a gene is determined by the combined effects of various transcriptional system regulators (TSRs). However, characterizing the complexity of regulation of the transcriptome is a major challenge. Principal component analysis on 17,550 heterogeneous human microarray experiments revealed that 50 orthogonal factors (hereafter called TSRs) are able to capture 64% of the variability in expression in a wide range of experimental conditions and tissues. We identified gene clusters controlled in the same direction and show that gene expression can be conceptualized as a process influenced by a fairly limited set of TSRs. Furthermore, TSRs can be linked to biological functions, as we demonstrate a strong relation between TSR-related gene clusters and biological functionality as well as cellular localization, i.e. gene products of similarly regulated genes by a specific TSR are located in identical parts of a cell. Using 3,934 diverse mouse microarray experiments we found striking similarities in transcriptional system regulation between human and mouse. Our results give biological insights into regulation of the cellular transcriptome and provide a tool to characterize expression profiles with highly reliable TSRs instead of thousands of individual genes, leading to a >500-fold reduction of complexity with just 50 TSRs. This might open new avenues for those performing gene expression profiling studies

    Co-localization and regulation of basic fibroblast growth factor and arginine vasopressin in neuroendocrine cells of the rat and human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult rat hypothalamo-pituitary axis and choroid plexus are rich in basic fibroblast growth factor (FGF2) which likely has a role in fluid homeostasis. Towards this end, we characterized the distribution and modulation of FGF2 in the human and rat central nervous system. To ascertain a functional link between arginine vasopressin (AVP) and FGF2, a rat model of chronic dehydration was used to test the hypothesis that FGF2 expression, like that of AVP, is altered by perturbed fluid balance.</p> <p>Methods</p> <p>Immunohistochemistry and confocal microscopy were used to examine the distribution of FGF2 and AVP neuropeptides in the normal human brain. In order to assess effects of chronic dehydration, Sprague-Dawley rats were water deprived for 3 days. AVP neuropeptide expression and changes in FGF2 distribution in the brain, neural lobe of the pituitary and kidney were assessed by immunohistochemistry, and western blotting (FGF2 isoforms).</p> <p>Results</p> <p>In human hypothalamus, FGF2 and AVP were co-localized in the cytoplasm of supraoptic and paraventricular magnocellular neurons and axonal processes. Immunoreactive FGF2 was associated with small granular structures distributed throughout neuronal cytoplasm. Neurohypophysial FGF2 immunostaining was found in axonal processes, pituicytes and Herring bodies. Following chronic dehydration in rats, there was substantially-enhanced FGF2 staining in basement membranes underlying blood vessels, pituicytes and other glia. This accompanied remodeling of extracellular matrix. Western blot data revealed that dehydration increased expression of the hypothalamic FGF2 isoforms of ca. 18, 23 and 24 kDa. In lateral ventricle choroid plexus of dehydrated rats, FGF2 expression was augmented in the epithelium (Ab773 as immunomarker) but reduced interstitially (Ab106 immunostaining).</p> <p>Conclusions</p> <p>Dehydration altered FGF2 expression patterns in AVP-containing magnocellular neurons and neurohypophysis, as well as in choroid plexus epithelium. This supports the involvement of centrally-synthesized FGF2, putatively coupled to that of AVP, in homeostatic mechanisms that regulate fluid balance.</p
    corecore