29 research outputs found

    Visualizing internetworked argumentation

    Get PDF
    In this chapter, we outline a project which traces its source of inspiration back to the grand visions of Vannevar Bush (scholarly trails of linked concepts), Doug Engelbart (highly interactive intellectual tools, particularly for argumentation), and Ted Nelson (large scale internet publishing with recognised intellectual property). In essence, we are tackling the age-old question of how to organise distributed, collective knowledge. Specifically, we pose the following question as a foil: In 2010, will scholarly knowledge still be published solely in prose, or can we imagine a complementary infrastructure that is ‘native’ to the emerging semantic, collaborative web, enabling more effective dissemination and analysis of ideas

    Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    Get PDF
    Background: The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings: Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250uC hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance: This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius an

    Safety and Security Interference Analysis in the Design Stage

    No full text
    Safety and security engineering have been traditionally separated disciplines (e.g., different required knowledge and skills, terminology, standards and life-cycles) and operated in quasi-silos of knowledge and practices. However, the co-engineering of these two critical qualities of a system is being largely investigated as it promises the removal of redundant work and the detection of trade-offs in early stages of the product development life-cycle. In this work, we enrich an existing safety-security co-analysis method in the design stage providing capabilities for interference analysis. Reports on interference analyses are crucial to trigger co-engineering meetings leading to the trade-offs analyses and system refinements. We detail our automatic approach for this interference analysis, performed through fault trees generated from safety and security local analyses. We evaluate and discuss our approach from the perspective of two industrial case studies on the space and medical domains.The research leading to this paper has received funding from the AQUAS project (H2020-ECSEL grant agreement 737475). The ECSEL Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme

    Capturing Design Decision Rationale with Decision Cards

    No full text
    Part 7: Design Rationale and Camera-ControlInternational audienceIn the design process, designers make a wide variety of decisions that are essential to transform a design from a conceptual idea into a concrete solution. Recording and tracking design decisions, a first step to capturing the rationale of the design process, are tasks that until now are considered as cumbersome and too constraining. We used a holistic approach to design, deploy, and verify decision cards; a low threshold tool to capture, externalize, and contextualize design decisions during early stages of the design process. We evaluated the usefulness and validity of decision cards with both novice and expert designers. Our exploration results in valuable insights into how such decision cards are used, into the type of information that practitioners document as design decisions, and highlight the properties that make a recorded decision useful for supporting awareness and traceability on the design process

    A framework for conceptualizing, representing, and analyzing distributed interaction.

    Get PDF
    The relationship between interaction and learning is a central concern of the learning sciences, and analysis of interaction has emerged as a major theme within the current literature on computersupported collaborative learning. The nature of technology-mediated interaction poses analytic challenges. Interaction may be distributed across actors, space, and time, and vary from synchronous, quasi-synchronous, and asynchronous, even within one data set. Often multiple media are involved and the data comes in a variety of formats. As a consequence, there are multiple analytic artifacts to inspect and the interaction may not be apparent upon inspection, being distributed across these artifacts. To address these problems as they were encountered in several studies in our own laboratory, we developed a framework for conceptualizing and representing distributed interaction. The framework assumes an analytic concern with uncovering or characterizing the organization of interaction in sequential records of events. The framework includes a media independent characterization of the most fundamental unit of interaction, which we call uptake. Uptake is present when a participant takes aspects of prior events as having relevance for ongoing activity. Uptake can be refined into interactional relationships of argumentation, information sharing, transactivity, and so forth. for specific analytic objectives. Faced with the myriad of ways in which uptake can manifest in practice, we represent data using graphs of relationships between events that capture the potential ways in which one act can be contingent upon another. These contingency graphs serve as abstract transcripts that document in one representation interaction that is distributed across multiple media. This paper summarizes the requirements that motivate the framework, and discusses the theoretical foundations on which it is based. It then presents the framework and its application in detail, with examples from our work to illustrate how we have used it to support both ideographic and nomothetic research, using qualitative and quantitative methods. The paper concludes with a discussion of the framework’s potential role in supporting dialogue between various analytic concerns and methods represented in CSCL
    corecore