16 research outputs found

    Towards a Semantic Gas Source Localization under Uncertainty

    Get PDF
    Towards a Semantic Gas Source Localization under Uncertainty.Communications in Computer and Information Science book series (CCIS, volume 855), doi:10.1007/978-3-319-91479-4_42This work addresses the problem of efficiently and coherently locating a gas source in a domestic environment with a mobile robot, meaning efficiently the coverage of the shortest distance as possible and coherently the consideration of different gas sources explaining the gas presence. The main contribution is the exploitation, for the first time, of semantic relationships between the gases detected and the objects present in the environment to face this challenging issue. Our proposal also takes into account both the uncertainty inherent in the gas classification and object recognition processes. These uncertainties are combined through a probabilistic Bayesian framework to provide a priority-ordered list of (previously observed) objects to check. Moreover the proximity of the different candidates to the current robot location is also considered by a cost function, which output is used for planning the robot inspection path. We have conducted an initial demonstration of the suitability of our gas source localization approach by simulating this task within domestic environments for a variable number of objects, and comparing it with an greedy approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One-dimensional <sup>1</sup>H-NMR spectroscopy is widely used for high-throughput characterization of metabolites in complex biological mixtures. However, the accurate identification of individual compounds is still a challenging task, particularly in spectral regions with higher peak densities. The need for automatic tools to facilitate and further improve the accuracy of such tasks, while using increasingly larger reference spectral libraries becomes a priority of current metabolomics research.</p> <p>Results</p> <p>We introduce a web server application, called MetaboHunter, which can be used for automatic assignment of <sup>1</sup>H-NMR spectra of metabolites. MetaboHunter provides methods for automatic metabolite identification based on spectra or peak lists with three different search methods and with possibility for peak drift in a user defined spectral range. The assignment is performed using as reference libraries manually curated data from two major publicly available databases of NMR metabolite standard measurements (HMDB and MMCD). Tests using a variety of synthetic and experimental spectra of single and multi metabolite mixtures show that MetaboHunter is able to identify, in average, more than 80% of detectable metabolites from spectra of synthetic mixtures and more than 50% from spectra corresponding to experimental mixtures. This work also suggests that better scoring functions improve by more than 30% the performance of MetaboHunter's metabolite identification methods.</p> <p>Conclusions</p> <p>MetaboHunter is a freely accessible, easy to use and user friendly <sup>1</sup>H-NMR-based web server application that provides efficient data input and pre-processing, flexible parameter settings, fast and automatic metabolite fingerprinting and results visualization via intuitive plotting and compound peak hit maps. Compared to other published and freely accessible metabolomics tools, MetaboHunter implements three efficient methods to search for metabolites in manually curated data from two reference libraries.</p> <p>Availability</p> <p><url>http://www.nrcbioinformatics.ca/metabohunter/</url></p

    A comparison of methods for classifying clinical samples based on proteomics data: A case study for statistical and machine learning approaches

    Get PDF
    The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems

    Prototypes within Minimum Enclosing Balls

    No full text
    We revisit the kernel minimum enclosing ball problem and show that it can be solved using simple recurrent neural networks. Once solved, the interior of a ball can be characterized in terms of a function of a set of support vectors and local minima of this function can be thought of as prototypes of the data at hand. For Gaussian kernels, these minima can be naturally found via a mean shift procedure and thus via another recurrent neurocomputing process. Practical results demonstrate that prototypes found this way are descriptive, meaningful, and interpretable
    corecore