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Abstract

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current
benchmark for elucidating information from multiple biological variables is the so called ‘‘omics’’ disciplines of the
biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come
under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can
produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method
employed to generate the data. Many classification methods are limited by an n%p constraint, and as such, require pre-
treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity
in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a
functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a
problem that might be solved using a statistical model-based approach where not only is the importance of the individual
protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach.
Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components
Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular
machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic
classification problems.
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Introduction

Protein studies have grown tremendously over the past decade

with traditional methodologies advancing from the analysis of

single gene products [1] to multiplex protein assays. Proteomics is

a field of research that aims to holistically assay and characterise

the protein complement within an organism, sample or tissue type.

The current technology allows scientists to gather information on

hundreds to thousands of proteins or peptides [2,3] simultaneously

using the one platform [4]. Such methodologies lend themselves to

use within biomarker discovery projects due to their high

throughput capacity and the large number of simultaneously

measured variables produced within a single experiment.

While proteomic evaluation has improved research output in a

variety of disciplines, it has also caused a number of problems

relating to interpretation and analysis of simultaneously measured

variables. These problems are similar to those encountered by

researchers investigating gene expression. A number of distinct

properties are observed within a proteomic dataset, each of which

need to be considered when deciding on an appropriate analytical

technique. The most notable is the so called ‘‘curse of dimension-

ality’’ where n%p [5,6]. That is, the number of observations, n, is

often far smaller than the number of variables (proteins or peptides),

p. This can lead to a number of problems which limit the

generalisability and therefore clinical utility of any resulting

diagnostic tools. This is relevant to this type of study due to the

capacity of proteomic research to produce hundreds and thousands

of variables (usually for a limited number of observations) depending

on the method and platform employed. Often the variable

intensities are highly correlated, this renders analysis methods that

consider the mass units separately as inappropriate, a detail which

has been ignored in previous studies [7]. High correlation is a result

of certain proteins being up-regulated which will then have an effect

on the up/down regulation of another which may or may not be

related to the covariates of interest. For example a protein may

differ among males and females but is also strongly correlated with

the pathological state of a disease.

The properties of proteomic datasets discussed above can

hamper the development of a robust classifier which is used to

distinguish between group states (e.g. discriminating between

diseased and non-diseased individuals). To circumvent these

difficulties a common processing step often used prior to

multivariate analysis is to reduce the dimensionality of the raw

data [8]. The most common approach involves filtering, for
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example carefully choosing a specific selection of statistically

relevant variables (proteins or peptides) prior to the model

development process. This approach affords removal of any

redundant or extraneous variables. Often the number of

biomarkers selected can be altered based on the stringency of

the variable selection process which is a user-defined meta-

parameter. However, care should be taken that the same data used

to tune the meta-parameter should not be used for subsequent

classification. Steps such as holding out data, especially for tuning

avoid this issue.

Alternately, the more popular approach in biomarker discovery

research is to leave all the variables in the dataset, and apply

dimension reduction strategies to project the mass units to a more

informative lower-dimensional space. Such efforts allow those

mass units that truly influence class separation to be obvious, while

the rest remain in the background. Dimension reduction also

accounts for the effects of highly correlated variables, a key

characteristic of proteomic and genomic data. In addition, the

analyst might choose to use a combination of variable selection

and dimension reduction strategies to produce an informative set

of biomarkers that achieve good classification results [9]. However

this decision is often influenced by the analysts’ choice of classifier,

of which there are numerous options [10].

A number of techniques have been used in the past for the

analysis of proteomic data. These include computation methods

such as support vector machines (SVM), artificial neural networks

(ANN) and random forests (PLS-RF), as well as model-based

approaches like Partial Least Squares-Linear Discriminant Anal-

ysis (PLS-LDA) and Principal Components Regression-Linear

Discriminant Analysis (PCR-LDA).

Willingale et. al. (2006) used SVM, ANN, genetic algorithms and

Decision Forests on data produced on a Matrix-assisted laser

desorption/ionisation – Time of flight mass spectrometry platform

(MALDI-TOF/MS) from heart failure patients. They built their

classifiers using a training set consisting of 100 heart failure and

100 control participants, and tested it using 32 heart failure and 20

control participants. Each classifier performed well with the

authors concluding that one in particular, which achieved 88.5%

correct classification on the test set, will be followed up with MS/

MS analysis techniques [11]. Smith et. al. (2007) used SVM to

classify early phase response to multimodal neoadjuvant therapies

used on rectal tumour patients. A SVM classifier was built using

seven time points, the classifiers had a sensitivity range between

25–87.5% and a specificity range of 64–80%. A key limitation of

this study, however, was the insufficient number of observations

(n = 20) on which the classification rule was built on [12]. Others

have also used computational classification approaches with

varying degrees of success [13,14].

Purohit and Rocke (2003) used supervised and unsupervised

dimension reduction and classification techniques which initially

incorporated PCA to reduce dimensionality, followed by hierar-

chical cluster analysis for visual classification of proteomic data

between healthy and diseased patients. In addition they assessed

combinations of PLS and PCR with logistic regression and

discriminant analysis methods for classification, demonstrating the

strength of PLS-based classification which out-performed PCR-

based methods [15].

Lee et. al. (2003) applied SVM and an ANN algorithm to their

proteomic data boasting a training set accuracy of 100% and a

leave-one-out-cross-validation (LOO-CV) accuracy of 95.1% for

ANN and a 100% accuracy on the training set. However, they

misclassified 5 out of 41 observations using SVM. This was

compared to 100% training set accuracy and 85% accuracy on a

test set using a simple two component PLS-DA model [16].

Liu et. al. (2008) incorporated PLS based methods into an

ovarian cancer classification problem [17]. They compared PLS-

LDA, PLS- k nearest neighbour (PLS-KNN), PLS-logistic

regression (PLS-LR) and PLS-ANN to a range of PCA-based

classification methods. Their findings suggest that PLS dimension

reduction followed by a logistic regression (LR) classification

produces improved results from that of PCA-based methods and

other PLS approaches.

Rajalahti et. al. (2009) used PLS to reduce dimensionality

followed by discriminant analysis to classify between cerebrospinal

fluid (CSF) samples and CSF samples spiked with peptide

standards [18]. They also compared three popular variable

selection methods commonly used, one of which was based on

PLS weights similar to Purohit and Rocke (2003).

Here we define computational methods as those which do not

produce a functional model and were developed in the machine

learning literature. A statistical method refers to a method that

results in an explicit classification rule that clearly relates the

features to class membership, such methods originally came from

the multivariate analysis literature. Computational methods are

popular and are often used on proteomic data, however they can

be cumbersome and don’t necessarily outperform statistical

methods. This was demonstrated in a recent proteomic compe-

tition [19,20] where simple PCA-based techniques [21,22]

outperformed novel computational approaches [19]. Furthermore,

the absence of a functional model makes the interpretation of

results using computational methods limited, where often the only

thing known based on such methods is the success of classification.

This manuscript aims to demonstrate the utility and versatility

of PLS-based classification methods on clinical proteomic datasets.

Here, PLS-LDA, PLS-RF, SVM and PCA-LDA classification

rules have been objectively compared on a range of trimmed

(undergone variable pre-selection) and untrimmed datasets. We

demonstrate that SVMs produced the more efficient classifier on

most of the datasets tested, although, PLS-based classifiers

produced models with additional meaningful information. They

yield protein loadings, lend themselves to visualization and

produce (when used in conjunction with a statistical classifier)

functional models. An additional aspect of PLS-based methods is

the speed at which the algorithm works and the efficient nature in

which they reduce the complexity of the data.

Results

Dimension reduction-based methods (PLS & PCA)
The misclassification rate (MCR) of both the Gaucher dataset

and the OC data indicates that these two datasets responded

favourably to variable pre-selection. Whereas the MCR for the LC

and CRC datasets indicates they were not largely affected by

variable pre-selection. We expected negligible performance

differences between variable selection and no variable selection

with these two datasets in particular, as they did not contain all of

the original mass units, having undergone previous filtering [14].

The classification results for each of the dimension reduction

methods are presented in Table 1.

In terms of model parsimony, PLS-based methods performed

well; in most cases these models utilise the least number of

components and resulted in the lowest MCRs. With respect to the

Gaucher data, a monotonic decrease across the number of

components analysed in the PCA-LDA classifier was observed

when using all variables (Figure 1). On this dataset, PCA-LDA

resulted in the lowest MCR rate when all the variables were used.

However, this was at a cost to model complexity as all 17

components were required to reach this accuracy. Furthermore,
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using the trimmed Guacher disease dataset, PCA-LDA outper-

formed both PLS-LDA and PLS-RF methods with lower MCR

using a smaller number of components (Figure 2).

Both the LC and CRC datasets produced comparable results.

More specifically, for the LC data the decrease in MCR for the

PLS methods between variable selection and no variable selection

was not followed by a decrease in model complexity, with the same

number of components being suggested for both the full dataset

and the trimmed set (Table 1). This is in sharp contrast to the PCA

classification method which somewhat counter intuitively required

considerably fewer components in the full dataset to get a MCR

comparable to that in the trimmed dataset. Recall that these

datasets have already been pre-processed to include variables that

best discriminate between groups. Thus the performance of the

PCA classification methods is not surprising as the optimal

variables were present in the untrimmed data. The CRC results

were almost identical to the LC dataset results. The only difference

being that variable selection decreased the number of components

in the PLS-LDA model from 6 to 5 which resulted in an identical

MCR rate of 0.089. Therefore PLS-LDA demonstrated superior

classification with a smaller number of variables than PLS-RF and

PCA-LDA on both of these datasets.

The OC cancer dataset was by far the most complex set

analysed here. Again, the PLS-based methods outperformed PCA-

LDA when no variable pre-selection was employed (Table 1).

However when variable pre-selection was performed the MCR

was almost equal between PLS-LDA and PCA-LDA, although

PCA-LDA did require an additional 2 components to reach

equivalence with the PLS based method (3 components for PLS

and 5 for PCA), see Table 1.

In order to gain insight on the differences between each of

the dimension reduction techniques, and the effects of

including additional components into the model, the MCRs

for each classifier built on each of the untrimmed datasets is

summarised in Figure 1 A through D. In every dataset the first

five to seven components in the PLS-LDA method demonstrate

the best classification rate. This observation is probably due to

PLS’s capacity to retain the important information in the

earlier components when many mass units are used to build

the model. More than seven components either increase or

stabilise the MCR such that the addition of more than 7

components adds little value to the classification model (Figure 1

A–D). Of the dimension reduction methods tested, the PLS-RF

approach performed most poorly. Specifically, while a

decreasing trend in MCR was observed using fewer compo-

nents, similar to the PLS-LDA method, the MCR was

consistently higher than the PLS-LDA approach using the

first seven components (Figure 1 A–D). However, the MCR

stabilised using the PLS-RF method with the addition of PLS

components to the model. Whereas, the MCR was not greatly

improved by the addition of more than four components to the

PCA based method (Figure 1 A–D).

Table 1. Dimension Reduction Classifier Performance Summary.

Method MCR AUC Spec Sens No. Components Data set

pls.lda (full) 0.287 0.635 0.694 0.75 12 Gaucher

pls.rf (full) 0.343 0.75 0.707 0.636 3

pca.lda (full) 0.231 0.992 0.779 0.794 17

pls.lda (trimmed) 0.115 0.823 0.859 0.918 7

pls.rf (trimmed) 0.171 0.919 0.852 0.821 7

pca.lda (trimmed) 0.046 0.992 0.918 0.995 6

pls.lda.lung (full) 0.196 0.889 0.778 0.837 5 Lung cancer

pls.rf.lung (full) 0.225 0.85 0.764 0.794 6

pca.lda.lung (full) 0.2 0.897 0.756 0.85 9

pls.lda (trimmed) 0.199 0.881 0.79 0.819 5

pls.rf (trimmed) 0.232 0.841 0.751 0.794 6

pca.lda (trimmed) 0.217 0.88 0.741 0.83 17

pls.lda.CRC (full) 0.089 0.954 0.853 0.966 5 Colorectal cancer

pls.rf.CRC (full) 0.113 0.951 0.88 0.896 8

pca.lda.CRC (full) 0.089 0.97 0.862 0.959 10

pls.lda (trimmed) 0.089 0.951 0.855 0.963 6

pls.rf (trimmed) 0.119 0.941 0.89 0.877 8

pca.lda (trimmed) 0.11 0.952 0.845 0.933 2

pls.lda (full) 0.26 0.478 0.7 0.784 8 Ovarian cancer

pls.rf (full) 0.286 0.794 0.678 0.722 7

pca.lda (full) 0.315 0.777 0.627 0.757 17

pls.lda (trimmed) 0.159 0.914 0.807 0.811 3

pls.rf (trimmed) 0.191 0.897 0.818 0.81 9

pca.lda (trimmed) 0.157 0.931 0.787 0.892 5

The performance summary (MCR = Misclassification rate, AUC = Area under the curve, Sens = Sensitivity, Spec = Specificity, No. Components = the number of
components used in the model) of each classifier for both the full dataset (‘‘full’’) and the trimmed dataset (‘‘trimmed’’) that underwent variable selection using a
univariate moderated t-statistic. These are mean values based on 1000 bootstrap samples for each dataset except the OC data which used 200 bootstrap samples.
doi:10.1371/journal.pone.0024973.t001

Comparison of Classification Methods in Proteomics

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24973



Each classifier’s accuracy was lower when variable selection was

not performed compared to when the top 30 variables (trimmed

dataset) were used (Figure 2 A–D). The exception to this was the LC

and CRC datasets as they had undergone variable selection prior

to this study which may explain why they performed better than

the unmodified Gaucher and OC datasets. Again the PLS

dimension reduction methods show most of the valuable variability

within the data is retained using less than seven components,

while, the addition of further components adds no value to the

classification model. In addition, as observed for the full data set,

the MCR stabilised when more than six components were used in

the PLS-RF method (Figure 2 A–D).

SVM classification
Unlike PCA and PLS, SVMs do not utilise a component space,

as such the number of reduced dimensions does not need to be

optimised. After deciding which kernel to employ, the only

parameter that needed to be tuned was the cost, or C-term. On the

untrimmed data, changing the C-term did not affect classification

in the Gaucher and OC datasets with a MCR of 0.204 and 0.266,

respectively. Whereas, a cost equal to 0.1 produced the lowest

MCR in the untrimmed LC and CRC datasets. A cost of 0.1 also

resulted in the lowest MCR using the trimmed data in all datasets

(Table 2).

Summary of all classifiers
Based on the results, the SVM’s were almost always the best

classifier, except in the CRC dataset where PLS-LDA produced a

MCR of 0.089 and in the Gaucher dataset where a six component

PCA-LDA model produced a MCR of 0.046 compared to 0.112

and 0.05, respectively, using the SVM approach (Table 1 & 2). It is

important to remember however, that the CRC dataset has been

pre-filtered. In addition, when the same number of components

are used to build the classification rule in both the PCA-LDA and

PLS-RF methods as those used in the optimised PLS-LDA method

(lowest PLS-LDA MCR) our data indicate that the PLS-LDA

Figure 1. Misclassification rates of dimension reduction classifiers using the untrimmed datasets. Mean misclassification rates for each
of the dimension reduction-based methods using the full dataset (all variables) in the dataset to build the classification model. A) Is from the OC
dataset [16], B) is from the Gaucher disease dataset [46], C) is from the LC datasets and D) is from the CRC dataset [14]. Blue circles illustrate PLS-LDA
classification results, red triangles are from a PLS-RF classifier and purple crosses show results obtained from a PCA-LDA classifier.
doi:10.1371/journal.pone.0024973.g001
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method resulted in a lower MCR than either PCA-LDA or PLS-

RF methods in all cases but one (Figure 3).

A key advantage that the dimension reduction techniques have

is that they yield loadings which represent feature-disease status

associations in a computationally efficient manner. SVMs derive

the decision boundary based on a small number of observations

occupying the margin of the space contiguous between the

groups. For this reason, any classification rule (and therefore

individual feature loadings) derived from the support vectors will

not have the theoretical underpinning afforded to the classifica-

tion rules derived from PLS or PCA. In both PCA and PLS based

methods, assumptions about linear associations among features,

and a multivariate distribution of observations in the feature

space (not an unrealistic assumption for this type of data) allow

posterior probabilities to be calculated for individual observa-

tions. For this reason, the statistical PLS-based approaches offer

some strong advantages over the machine leaning-based SVM

procedure.

Moreover, due to the supervised nature of PLS, it does a far

better job of extracting between-class variation while demonstrat-

ing the variables that explain this variation compared to PCA. An

example of this is in variables 7, 4, 5, and 10 in blue within Figure 4

A which seem to be influencing the separation between disease and

control groups in the Gaucher dataset. Another valuable utility of

PLS loadings are to display the within-class variation, for example

the control group is spread out compared to the Gaucher group.

This variability seems to be partially influenced by a cluster of

mass units highlighted in red, see Figure 4 A. For comparative

purposes a biplot using PCA on the same 30 variables is presented

in Figure 4 B. From this it is clear to see the separation isn’t as clear

between each cohort, as such, it is not as apparent which variables

are important in explaining differences between disease and

control groups.

An additional disadvantage of the SVM procedure is it is only

appropriate for two class problems. Although SVMs can be run on

a pairwise basis for the classes .2 case, assessment of feature

loadings and graphical representations are much less likely to be

valid using a SVM strategy for the same reasons stated above. In

contrast, the PLS approach can be formulated for any number of

groups.

Figure 2. Misclassification rates of dimension reduction classifiers using the trimmed datasets. Mean misclassification rates for each of
the dimension reduction-based methods using the trimmed dataset to build the classification model. A) Is from the OC dataset [16], B) is from the
Gaucher disease dataset [46], C) is from the LC datasets and D) is from the CRC dataset [14]. Blue circles illustrate PLS-LDA classification results, red
triangles are from a PLS-RF classifier and purple crosses show results obtained from a PCA-LDA classifier.
doi:10.1371/journal.pone.0024973.g002
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Discussion

In this work we concentrated on the number of components that

best performed classification of disease or non-disease groups

under cross validation. In a clinical setting, readers are advised to

calculate the optimal number of kPLS components based on some

similar cross-validation criteria. In such canonical approaches,

knowledge of disease state is required only for the learning set.

After a suitable model has been trained, calibrated and validated

using this learning data, estimates of disease class from unseen

patients may be calculated without a priori knowledge of disease

class.

The performance of the classification methods considered was

highly variable across the datasets we used. Indeed, there was no

single method that was convincingly superior across all of the

datasets, suggesting that the final classifier to use should be based

on a dataset by dataset basis after testing multiple classification

rules. Additionally, if investigation into feature-disease status

associations is of particular importance to the study design,

perhaps a PLS based methodology should be adopted. We utilised

PCA-LDA primarily due to its heavy use as a visualisation tool in

‘omics’ data [23–25]. PCA-LDA is not designed to capture

between group variability and for this reason we do not advocate

the use of PCA-LDA as a classification method. A challenge in this

study was to meaningfully compare methods. Given the LC and

CRC datasets had already undergone some degree of pre-

processing (e.g. filtering) it was important that each of the datasets

were reduced to the top 30 variables to meaningfully compare

each method. While each of these methods is capable of handling

more mass units than there are observations, filtering is generally

recommended to remove the fraction of mass units that are not

differentially present across classes [26], as well as to reduce the

number of possible false positives. Another point of view is that the

analytical approach should incorporate both feature selection and

classification within the one model, this process is possible using a

PLS-based method.

We have demonstrated here that PLS and SVM show strong

utility for the generation of good classification results, even in the

absence of dataset filtering. In fact, we believe using several

methods for feature selection and classification may not be

preferable to a single method (e.g. PLS) to both identify important

masses and build a classification rule. PLS, unlike many filtering

approaches (including the linear approaches used here) is a

wrapping method as it formally takes into account the correlations

among the mass units. A key pitfall of SVM is it’s ‘‘one-to-all’’

approach [27] to a multiclass classification problem, unlike PLS-

based classification which has been applied previously to the

multiclass problem with promising results [28].

In this study design we employed a large number of learning sets

in order to gain confidence in the accuracy of the MCR. The

Gaucher dataset alone, produced by Surface enhanced laser

desorption/ionisation – Time of flight/Mass spectrometry (SELDI

– TOF/MS), responded the best using a combination of variable

selection and PCA-LDA, based solely on MCR. This dataset aside,

the general performance of PCA-LDA resulted in a loss of model

parsimony which was the key disadvantage of this method across

each dataset. Taking both parsimony and MCR into account, the

PLS-LDA approach demonstrated more consistency across each

of the datasets. As expected all approaches improved when

variable pre-selection was implemented prior to dimension

reduction and classification, except for the LC and CRC datasets

which already contained the optimized variables and thus filtering

only reduced the classifiers ability to distinguish case from control

due to reducing the number of significant variables.

Here we compared a range of methods on a range of datasets

produced using different Mass Spectrometry platforms. There are

Table 2. SVM tuning results.

Dataset Cost Full dataset (MCR) Trimmed dataset (MCR)

Gaucher 0.1 0.204 0.05

1 0.204 0.052

5 0.204 0.052

10 0.204 0.052

CRC 0.1 0.102 0.112

1 0.105 0.139

5 0.105 0.156

10 0.105 0.156

Lung 0.1 0.182 0.168

1 0.183 0.192

5 0.183 0.207

10 0.183 0.208

Ovarian 0.1 0.266 0.15

1 0.266 0.165

5 0.266 0.166

10 0.266 0.166

The performance summary (MCR = Misclassification rate) of a SVM-based
classifier for both the full dataset (‘‘full’’) and the trimmed dataset (‘‘trimmed’’)
that underwent variable selection using a univariate moderated t-statistic.
These are mean values based on 1000 bootstrap samples for each dataset
except for the OC data which used 200 bootstrap samples.
doi:10.1371/journal.pone.0024973.t002

Figure 3. Summary of Misclassification results for all classifiers.
Summary of mean MCR results for each of the optimised classifiers on
each trimmed dataset. These results demonstrate the MCR for each
classifier using the optimal number of reduced components from the
PLS-LDA (excluding SVM). Gaucher data uses a 7 component model, the
LC data uses a 5 component model, the CRC data uses a 6 component
model and the OC data uses a 3 component model for each.
doi:10.1371/journal.pone.0024973.g003
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a number of possible approaches available to analyse multi-

dimensional proteomic data. Currently, both machine learning

and multivariate statistical methods are used within the microarray

and proteomic fields with varying degrees of success. Machine

learning methods have advantages of dealing with non-linear

relationships but do not provide useful information for modelling

variability in proteins. Alternately, multivariate statistical ap-

proaches are generally limited to linear associations but lend

themselves to the explicit modelling of proteins or derived

combinations thereof (i.e. latent components). In addition, it

may be desirable to move towards methods where feature selection

and classification are performed together in the one method. As

such PLS offers great potential for the analysis of high dimensional

proteomic data. In addition, further research on the capacity and

utility of classification methods from proteomic classification

should involve simulated data.

Methods

A proteomic dataset
A typical proteomic data matrix Xij will consist of response

variables in the form of protein or peptide intensities and is

composed of i rows (observations, participants), and j columns

(proteins, peptides, m/z). Note that from here on the term ‘‘mass

unit’’ will be used to represent proteins, peptides or mass over

charge (m/z) units. In the case of classification, a vector of dummy

variables, yi is coded to identify group membership of the

observations. For multiclass cases, yi is extended to Y by

constructing an indicator matrix.

Xij~

x1,1 � � � x1,j

..

.
P

..

.

xi,1 � � � xi,j

2
664

3
775

n|p

and; yi~

1

1

1

0

..

.

0

2
6666666664

3
7777777775

n

ð1Þ

SVM
Support Vector Machines (SVM) determine the optimal

hyperplane between each class using only those training points

which lay closest to the decision boundary. The points laying on

the boundaries are so called ‘‘support vectors’’ and the space

between is the margin. Support vectors from each class are

maximised such that the centre of the margin becomes the optimal

decision boundary (hyperplane). This is done by mapping xiM d

into a high dimensional feature space using a linear or nonlinear

function Q :ð Þ : Rd?Rdh . As discussed above, proteomic data

typically contains a small number of observations with a large

number of variables. Such conditions make it unlikely that classes

are not linearly separable on the learningset, however this often

results in a model that is overfit to the training data and not

applicable to test data. Additionally, given the complexity (i.e.

erroneous signal through noise etc.) and overlapping nature of

classes in real-world data the expectation that each of the unseen

test classes are linearly separable based on the learning model

might be unrealistic. For this reason leniency of misclassified data

points in and around the margin are tolerated by:

t w,jð Þ~ 1

2
wk k2

zC
XN

i~1

ji ð2Þ

Adjusting the regularization constant, C.0 affords a balance

between classification accuracy and margin size. If C is too large,

there is a high penalty for nonseparable points and as a result may

store many support vectors and overfit. If it is too small,

underfitting may occur. Here w represents an unknown vector

with the same dimensions as Q(x).

Equation 2 is solved using the Lagrange multipliers 0#ai#C, the

solution of which is obtained by:

f xð Þ~sign
XnSV

i~1

aiciK x,xið Þzb

 !
, ð3Þ

where nSV represents the number of support vectors, bM and K(.,.)

is the kernel function which enables the representation of the

training data in the feature space Rdh without ever leaving d. The

Figure 4. Comparison of PLS and PCA for dimension reduction. These plots demonstrate the capacity PLS has to separate classes based on
the top 30 variables (Figure 4A) in the Gaucher dataset when compared to PCA (Note that this class separation is being heavily influenced by the
loadings highlighted in Blue. Additionally, the vectors highlighted in red explain the within class variation in the control group. This is a key
advantage PLS has over other methods.
doi:10.1371/journal.pone.0024973.g004
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kernel function can take many forms including: Linear, Gaussian,

polynomial and radial basis function kernels [29,30].

A key advantage SVMs have over other methods is their ability

to manage both linear and non-linear classification problems,

although their application to multi-class problems is limited due to

their dependence on a one-to-one approach. This problem is often

circumvented by representing a multiclass problem as several

binary classification problems (i.e. one-to-all) [27]. For further

details on SVMs, including a solid theoretical overview, see Burges

(1998) [31] and for practical applications of SVMs see Luts, et. al.

(2010) [27].

Principal Components Analysis (PCA)
Principal components analysis is a popular dimension reduction

method used to explore variation in complex datasets. The

objective of principal components analysis is to summarise the

data in as few dimensions as possible without losing an excessive

amount of information. This is done by decomposing the data

matrix, Xij, such that it is the product of a scores matrix Tik and a

loadings matrix Pij. Note that kPCA represents the number of

components or latent variables extracted from the data, such that

each observation can be represented as a point in kPCA-

dimensional space. This relationship is typically summarised by:

X~TPTzE ð4Þ

where E denotes the residual error calculated from the deviations

between the original values and their projection onto the new set

of latent variables (components).

Prior to determining the latent variables, it’s conventional to

appropriately pre-process the original matrix of intensities first.

Note that this is not related to the signal pre-processing required

on particular types of MS data e.g. SELDI - TOF/MS or MALDI

- MS1 outputs. Data pre-processing prior to PCA usually involves

performing one of the following: 1) taking the covariance matrix

and first centring the data then calculating the outer product

(XXT); 2) using the correlation matrix which is a result of centring

and reducing X to unit variance followed by calculating XXT; or

3) leaving the data un-centred and un-standardized to unit

variance, the resulting XXT is the sums of squares and sums of

cross-products matrix.

Centring the data involves displacing the origin such that the

global mean vector is equal to zero, while reducing the data to unit

variance allows all variables to contribute equally to how the

observations are presented in the reduced dimensional space,

irrespective of the individual variance of each. This is particularly

useful if the magnitude of each mass unit’s variance does not relate

to its comparative importance. Thus if only centred (covariance

matrix) data are entered into the PCA algorithm the effect of

individual m/z’s will have a greater influence on how the

observations are seen in the lower dimensional space, while

centering and scaling (correlation) reduces any effects due to m/z’s

with large variances. If the variables are all in the same units and

are the same kind, the covariance matrix is often used. When

implementing PCA it is important to note that different software

packages use different pre-processing techniques.

In summary, PCA attempts to construct linear combinations of

the original variables that are linearly independent (orthogonal) of

each other. This is done in a way that attempts to preserve the

euclidean distance among observations, that is, when the original

observations are projected onto the new latent variables, the

relative distance between objects in the original data and the new

kPCA-dimensional space is conserved.

Partial Least Squares (PLS)
Partial Least Squares is a canonical projection method which

offers promising supervised dimension reduction capacity; this

technique is used on datasets containing class membership

variable/s, y, and predictor variable X. Unlike other popular

dimension reduction techniques, such as principal components

analysis, the PLS algorithm calculates each latent variable from X
based on y. The objective is to maximize the covariance between y
and X, unlike PCA which maximizes the variance of the variables,

X, alone. Thus PLS, unlike PCA, explicitly accounts for the

covariates (e.g. class membership) within the model.

In PLS, the latent variables (kPLS = 1,…,p where kPLS#k) are a

product of the iterative decomposition of X and y such that the

original variables (mass unit intensities) get projected to a lower

dimensional space where a sequence of bilinear models are fitted by

ordinary least squares (at least originally this was the case), hence the

name partial least squares [32]. This is especially true for the NIPALS

method, however, later implementations use an eigen-analysis

approach which brings it into line with most other classical

multivariate methods. The goal of PLS is to find the linear

relationship between the response and explanatory variables y and X:

X~TPTzEx ð5Þ

y~TCTzEy

Where T represents the scores (latent variables) that our data have

been projected down to, P and C are loadings and Ex and Ey are the

residual matrices obtained from the original X and y variables.De-

termination of the lower dimensional components requires:

wi~ arg max
w

Cov2 Xw,yð Þ~ arg max
w

yT Xw
� �2 ð6Þ

Subject to wT
i wi~1 and tT

i tj~wT
i XT Xwj~0, as described in [17].

The general PLS algorithm works as follows:

1) PLS components are calculated as the latent variable which

maximizes the covariance between X and y;

2) The variance (information) from this component is removed

from the original X-data, a process known as deflation. The

remaining residual matrix has equal column and row lengths

to the X-data, only the intrinsic dimensionality has been

reduced by one; and

3) The next PLS component is calculated from the current

residual matrix, and as in step 1, results in maximum

covariance between X(1,…,j) and y subject to the constraint

that it is mutually orthogonal with the previous one. This is

repeated iteratively until little more improvement to the

modelling of y can be achieved or X becomes a null matrix.

Note that deflation of the X matrix is carried out differently

between the numerous PLS algorithms available i.e. NIPALS,

SIMPLS and Kernal PLS algorithms [33,34]. An overview and

history of PLS may be found in Geladi and Kowalski (1986),

Wegelin (2000), Martens (2001) and Wold (2001) [33,35–37].

Classification
While PCA and PLS can provide class separation on a

qualitative level, they are not strictly classification methods

themselves, but are dimension reduction techniques. Typically it

is used in conjunction with existing classification methods.
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Linear Discriminant Analysis (LDA). In the context of this

paper, LDA seeks to find a linear combination of the new

components, T, obtained from the preceding PCA or PLS

dimension reduction process. A key pitfall with the

implementation of LDA is its inability to deal with a n%p
dataset. As such, incorporating PCA or PLS prior to classification

will result in a reduced dimensionality of the original X data that is

better handled by the formal model that LDA provides. This is

done by projecting the observations onto this new co-ordinate

system and passing them onto the classifier. A model is then

developed to predict the class of an unknown observation based on

prior probabilities calculated from a learning set, Li. Ideally these

priors are maximized for group membership in order to get the

best separability. The linear combination is calculated such that it

maximizes the ratio of between-class variance relative to the

within-class variance:

Ratio~
dT Bd

dT Nd
ð7Þ

Where B is the between class sample covariance matrix such that:

B~
Xg

i~1

Li
�tti{�ttð Þ �tti{�ttð ÞT , ð8Þ

and N is the within class sample covariance matrix,

N~
XLi

i~1

Xg

j~1

Li
�ttij{�tt
� �

�ttij{�tt
� �T ð9Þ

d is the direction that best distinguishes the difference between

each class in the reduced dimensional space determined through

PLS or PCA. Note that Li is the learning set observations. LDA

assumes that the data are multivariate-normally distributed with

equal variance/covariance matrices.

Random Forests. The Random Forests algorithm was

formulated by Breiman (2001). Although a relatively new

method, it has gained popularity for use on a wide range of

linear and non-linear problems, partially due to being a model-free

approach. Based on decision trees, a Random Forest is a classifier

produced by aggregating individual tree predictors which have

been built using i randomly sampled bootstrap observations from

the original data [38]. Each tree in the forest is completely grown

(i.e. no pruning) from each observation which are selected through

bootstrap sampling. Trees are grown based on a decision criteria

determined at each node; the number of trees can be selected

based on the number of observations included. The combination

of bagging and random variable selection to grow each tree

produces a powerful tool with appealing characteristics for use on

quantitative proteomic data. In addition, Random Forests can

provide valuable information on variable importance, although

research in this area is currently ongoing to reduce variable

selection bias problems [39,40]. When applied in conjunction with

PLS the algorithm works as follows:

The RF algorithm builds an ensemble of classification trees

which constitute the forest by:

1) For T1,…,kPLS latent variables a large number of random

samples, S1,…,j, are obtained z times with replacement

(bootstrap samples). Due to the nature of bootstrap sampling

some observations may be observed once or may be present

in replicates, while others will not be represented at all.

Those that have not been selected are termed out-of-bag

(OOB) data and need to be known. The random selection of

predictors reduces the correlation between the trees in the

forest.

2) For each node in each tree, r, input variables (vectors in our

PLS-reduced dimensional space) are selected randomly as

potential predictors on which the dataset is split. Unlike the

samples in step 1, these are not bootstrap samples. The tree

is then grown to completion with no pruning and the OOB

data is used to estimate the error value of that tree.

3) Steps 1–2 are repeated, thus for each sample, S1,…,j, a

classification tree is built resulting in a forest comprised of

multiple trees.

4) An unknown sample is classified by running it through each

of the trees in the forest where the resulting solution is

produced by a weighted or unweighted majority vote [41]. It

is the forest that constitutes the classification model.

Note that S and r are input by the user. It is suggested that r is

set to !p [17] where p is the number of input variables which, in

this context, is equal to the total number of variables in the matrix

T.

RF is a popular method that has gained recognition for its

ability to construct robust classifiers and select discriminant

variables in proteomics [42,43] and microarray fields [17,39,44].

A fundamental description of the method can be found in Malley

et. al. (2011) [41] and for a more mathematical based description

see the original works by Breiman (1996 and 2001) [38,45].

Datasets and data pre-processing
Each of the above techniques have been applied to several

published proteomic datasets. Each dataset was chosen as they

represent a number of diseases and popular Mass Spectrometric

platforms. These include:

a) A lung cancer (LC) and colorectal cancer (CRC) dataset

which both contain 50 cancer cases along with 50 and 45,

respectively, matched healthy controls. Both datasets have

already undergone variable pre-selection and as such contain

39 (LC) and 109 (CRC) variables (mass units). They were

both acquired using MALDI – TOF/MS technology and

have undergone the appropriate pre processing steps as

outlined in Schleif et. al. (2009) [14]. Their focus is on

classification using a novel supervised relevance neural gas

algorithm.

b) An ovarian cancer (OC) dataset acquired via MALDI –

TOF/MS with 47 cases and 44 controls and contains 24262

spectral features. The data set is available at http://

bioinformatics.med.yale.edu/MSDATA/ and has already

undergone the appropriate pre-processing steps outlined in

Wu et. al. (2003) [16]. The authors investigated the utility of

several classical methods of classification including LDA,

Quadratic Discriminant Analysis (QDA), KNN, Aggregated

classifiers, RF and SVM. In addition, they utilised variable

importance measures from RF and the univariate t-statistic

for variable selection creating a 15 and 25 variable dataset.

Each of these reduced datasets were then analysed through

the classification models. Additionally, they highlight the

convergence issues when using LDA and QDA as standalone

classifiers on high dimensional data.

c) A Gaucher disease dataset consists of SELDI – TOF/MS

spectra acquired from the serum of 20 Gaucher disease cases

and 20 controls [46]. One of the cases has been removed as a
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potential outlier based on the authors recommendation [46].

This data contains 590 variables and the spectra have been

pre-processed according to Smit et. al. (2007) [46]. The

authors employed a PCA-LDA and validated its classification

capacity with a permutation test followed by its predictive

ability via a double cross-validation approach. They found a

15 component PCA-LDA model provided the strongest single

cross-validation error.

Study design
A note on data analysis. All processed data was analysed in

the ‘R’ statistical computing and graphics program, version 2.11.1

(www.r-project.org), unless otherwise indicated. The CMA package

was primarily used for most of the classifiers described in this

manuscript [30]; while, our own PCA-LDA rule was developed and

implemented within the CMA frame work. Each dataset contains a

binary dummy variable set to either 0 or 1 indicating group class.
Comparison of different classifiers. Learning sets, L, and

test sets, T, were created for each dataset via bootstrap sampling.

Learning sets were built using randomly selected observations

consisting of a fixed ratio equal to two thirds (0.66) of the original

dataset, S. For each classification algorithm k-bootstrap learning

sets were created and aggregated, producing a learning matrix

consisting of size L1...kL
. For the LC, CRC and Gaucher datasets kL

was set to 1000. For the OC dataset kL = 200 bootstrap learning sets

due to the large number of variables and computational intensity

required by some of the classification methods.

Due to the range of different classifiers employed in this study,

each classification rule generated and tested was assessed based on

a global misclassification criteria generated from each of the test

sets. That is, the number of times a classification rule created from

L1,...,kL
misclassifies a sample from the test set, T.

Comparing classification based on all variables to that

based on preselected variables. From a biologist’s

perspective an important step, particularly within proteomic

studies, is to later identify the panels of mass units with which

the final classifier is built on. This is generally more important for

techniques that don’t acquire this additional data such as SELDI -

TOF/MS and MALDI-MS1 methods. For example a biologist

will often want to identify a particular mass in order to reveal its

biological relevance which could then be used to inform future

research directions. One view point is that the variables should be

preselected (filtered), to this end it is important to preselect the

variables that will be input into the classification method.

Variable pre-selection was performed using the Linear Models

for Microarray Data, ‘‘limma’’ [47] method which uses a

moderated t or F statistic to select significant masses. From each

dataset, the top 30 variables (i.e. lowest p-values) were identified

for each of the L1...kL
learningsets. Then a global top 30 were

selected by counting and ranking each of the scores from the entire

learningset matrix. These cross-validated global top 30 variables

were then used for each of the trimmed models.

The effects of variable selection algorithms on classification error

are not the primary theme of this manuscript, however, we include

results with and without variable pre-selection for comparison.

Hyperparameter tuning. For comparative purposes each of

the PLS-based methods was compared to two popular and well

established algorithms currently used; one machine learning

method (SVM) and one additional linear dimension reduction

method (PCA-LDA). Both PLS and PCA contain one adjustable

hyperparameter, kPLS and kPCA respectively, which is the number

of components used to build the model. For all methods that involve

dimension reduction i.e. the PCA-LDA, PLS-LDA and PLS-RF

classifiers, a misclassification rate (MCR) was calculated using a 2–

17 component model for comparative purposes. Not all dataset

responded favourably when PCA or PLS models required greater

than 17 components, so for reasons of comparison we limited

dimensionality to 17. Caution is advised when deciding how many

components to use; on the one hand too many components may

increase classification accuracy, while at the same time over-

parameterising the model may result in over-fitting. There is very

little gained by setting the number of components too high as the

model becomes superfluous with the additional parameters.

The SVM does not utilise a component space as is the case with

the other methods. As such, prior parameter tuning of the SVM

was performed and MCR was assessed between parameters. For

each L1,...,kL
a SVM with linear kernel was tuned using four

different ‘‘C’’ constants equal to 0.1, 1, 5, 10. The optimal

parameter was selected based on the lowest MCR. All classifiers

and subsequent analyses were performed on a SGI Altix 4700 (96

Itanium2 p9000 cores, 198 Gigabytes shared memory and a SUSE

Linux Operating System).
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