83 research outputs found
High strain rate deformation of porous sandstone and the asymmetry of earthquake damage in shallow fault zones
In contrast to coseismic pulverization of crystalline rocks, observations of coseismic pulverization in porous sedimentary rocks in fault damage zones are scarce. Also, juxtaposition of stiff crystalline rocks and compliant porous rocks across a fault often yields an asymmetric damage zone geometry, with less damage in the more compliant side. In this study, we argue that such asymmetry near the sub-surface may occur because of a different response of lithology to similar transient loading conditions. Uniaxial unconfined high strain rate loadings with a split Hopkinson pressure bar were performed on dry and water saturated Rothbach sandstone core samples. Bedding anisotropy was taken into account by coring the samples parallel and perpendicular to the bedding. The results show that pervasive pulverization below the grain scale, such as observed in crystalline rock, does not occur in the sandstone samples for the explored strain rate range (60–150 s−1). Damage is mainly restricted to the scale of the grains, with intragranular deformation occurring only in weaker regions where compaction bands are formed. The presence of water and the bedding anisotropy mitigates the formation of compaction bands and motivates intergranular dilatation. The competition between inter- and intragranular damage during dynamic loading is explained with the geometric parameters of the rock in combination with two classic micromechanical models: the Hertzian contact model and the pore-emanated crack model. In conclusion, the observed microstructures can form in both quasi-static and dynamic loading regimes. Therefore caution is advised when interpreting the mechanism responsible for near-fault damage in sedimentary rock near the surface. Moreover, the results suggest that different responses of lithology to transient loading are responsible for sub-surface damage zone asymmetry
Experimental postseismic recovery of fractured rocks assisted by calcite sealing
Postseismic recovery within fault damage zones involves slow healing of coseismic fractures
leading to permeability reduction and strength increase with time. To better understand this process,
experiments were performed by long-term fluid percolation with calcite precipitation through predamaged
quartz-monzonite samples subjected to upper crustal conditions of stress and temperature. This resulted in a
P wave velocity recovery of 50% of its initial drop after 64 days. In contrast, the permeability remained
more or less constant for the duration of the experiment. Microstructures, fluid chemistry, and X-ray
microtomography demonstrate that incipient calcite sealing and asperity dissolution are responsible for the P
wave velocity recovery. The permeability is unaffected because calcite precipitates outside of the main
flow channels. The highly nonparallel evolution of strength recovery and permeability suggests that fluid
conduits within fault damage zones can remain open fluid conduits after an earthquake for much longer
durations than suggested by the seismic monitoring of fault healing
The effects of Δ9-tetrahydrocannabinol on the dopamine system
Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, is a pressing concern to global mental health. Patterns of use are changing drastically due to legalisation, availability of synthetic analogues (‘spice’), cannavaping and aggrandizements in the purported therapeutic effects of cannabis. Many of THC’s reinforcing effects are mediated by the dopamine system. Due to complex cannabinoid-dopamine interactions there is conflicting evidence from human and animal research fields. Acute THC causes increased dopamine release and neuron activity, whilst long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of the drug
A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets
<p>Abstract</p> <p>Background</p> <p>Because insulin is the main regulator of glucose homeostasis, quantitative models describing the dynamics of glucose-induced insulin secretion are of obvious interest. Here, a computational model is introduced that focuses not on organism-level concentrations, but on the quantitative modeling of local, cellular-level glucose-insulin dynamics by incorporating the detailed spatial distribution of the concentrations of interest within isolated avascular pancreatic islets.</p> <p>Methods</p> <p>All nutrient consumption and hormone release rates were assumed to follow Hill-type sigmoid dependences on local concentrations. Insulin secretion rates depend on both the glucose concentration and its time-gradient, resulting in second-and first-phase responses, respectively. Since hypoxia may also be an important limiting factor in avascular islets, oxygen and cell viability considerations were also built in by incorporating and extending our previous islet cell oxygen consumption model. A finite element method (FEM) framework is used to combine reactive rates with mass transport by convection and diffusion as well as fluid-mechanics.</p> <p>Results</p> <p>The model was calibrated using experimental results from dynamic glucose-stimulated insulin release (GSIR) perifusion studies with isolated islets. Further optimization is still needed, but calculated insulin responses to stepwise increments in the incoming glucose concentration are in good agreement with existing experimental insulin release data characterizing glucose and oxygen dependence. The model makes possible the detailed description of the intraislet spatial distributions of insulin, glucose, and oxygen levels. In agreement with recent observations, modeling also suggests that smaller islets perform better when transplanted and/or encapsulated.</p> <p>Conclusions</p> <p>An insulin secretion model was implemented by coupling local consumption and release rates to calculations of the spatial distributions of all species of interest. The resulting glucose-insulin control system fits in the general framework of a sigmoid proportional-integral-derivative controller, a generalized PID controller, more suitable for biological systems, which are always nonlinear due to the maximum response being limited. Because of the general framework of the implementation, simulations can be carried out for arbitrary geometries including cultured, perifused, transplanted, and encapsulated islets.</p
A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways
All sequence data from this study were deposited at the European Bioinformatics Institute under the accession numbers ERS1670018 to ERS1670023. Further, all assigned genes, taxonomy, function, sequences of contigs, genes and proteins can be found in Table S3.In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (2136% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.This study was supported by a grant of BE-Basic-FES funds from the Dutch Ministry of Economic Affairs. The research of A.J.M. Stams is supported by an ERC grant (project 323009) and the gravitation grant “Microbes for Health and Environment” (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science. F. Hugenholtz was supported by the same gravitation grant (project 024.002.002). B. Hornung is supported by Wageningen University and the Wageningen Institute for Environment and Climate Research (WIMEK) through the IP/OP program Systems Biology (project KB-17-003.02-023).info:eu-repo/semantics/publishedVersio
RELATING THE FUNDAMENTAL COUPLING-CONSTANTS VIA A STABILITY PRINCIPLE
RENARD FM, Schildknecht D. RELATING THE FUNDAMENTAL COUPLING-CONSTANTS VIA A STABILITY PRINCIPLE. PHYSICS LETTERS B. 1989;219(4):481-487
THE STABILITY PRINCIPLE, SIN THETA-2(W) AND THE MASS OF THE TOP QUARK
RENARD FM, Schildknecht D. THE STABILITY PRINCIPLE, SIN THETA-2(W) AND THE MASS OF THE TOP QUARK. PHYSICS LETTERS B. 1989;225(4):443-449
- …