4 research outputs found

    What Is the Evidence Base for Climate-Smart Agriculture in East and Southern Africa? A Systematic Map

    Get PDF
    More than 500 million USD will soon be invested in climate-smart agriculture (CSA) programmes in sub-Saharan Africa. Improving smallholder farm management is the core of most of these programmes. However, there has been no comprehensive information available to evaluate how changing agricultural practices increases food production, improves resilience of farming systems and livelihoods, and mitigates climate change—the goals of CSA. Here, we present a systematic map—an overview of the availability of scientific evidence—for CSA in five African countries: Tanzania, Malawi, Mozambique, Zimbabwe and Zambia. We conducted a systematic literature search of the effects of 102 technologies, including farm management practices (e.g., leguminous intercropped agroforestry, increased protein content of livestock diets, etc.), on 57 indicators consistent with CSA goals (e.g., yield, water use efficiency, carbon sequestration, etc.) as part of an effort called the "CSA Compendium". Our search of peer-reviewed articles in Web of Science and Scopus produced 150,567 candidate papers across developing countries in the global tropics. We screened titles, abstracts and full texts against predetermined inclusion criteria, for example that the investigation took place in a tropical developing country and contains primary data on how both a CSA practice and non-CSA control affect a preselected indicator. More than 1500 papers met these criteria from Africa, of which, 153 contained data collected in one of the five countries. Mapping the studies shows geographic and topical clustering in a few locations, around relatively few measures of CSA and for a limited number of commodities, indicating potential for skewed results and highlighting gaps in the evidence. This study sets the baseline for the availability of evidence to support CSA programming in the five countries

    Genomic interventions to improve resilience of pigeonpea in changing climate

    No full text
    Pigeonpea is an important food legume crop for rainfed agriculture in developing countries, particularly in India. Productivity gains in pigeonpea have remained static, and the challenge of improving pigeonpea yield is further aggravated by increasingly uncertain climatic conditions. Improved pigeonpea cultivars with favourable traits, allowing them to cope with climatic adversities, are urgently required. Modern genomic technologies have the potential to rapidly improve breeding traits that confer resistance to biotic and abiotic stresses. Recent advances in pigeonpea genomics have led to the development of large-scale genomic tools to accelerate breeding programs. Availability of high-density genotyping assays and high-throughput phenotyping platforms motivate researchers to adopt new breeding techniques like genomic selection (GS) for improving complex traits. Accurate GS predictions inferred from multilocation and multiyear data sets also open new avenues for ‘remote breeding’ which is very much required to achieve genotype selection for future climates. Speed breeding pigeonpea with deployment of rapid generation advancement (RGA) technologies will improve our capacity to breed cultivars endowed with resilient traits. Once such climate-resilient cultivars are in place, their rapid dissemination to farmer’s fields will be required to witness the real impact. Equally important will be the acceleration of varietal turnover to keep pace with the unpredictably changing climatic conditions so that cultivars are constantly optimized for the climatic conditions at any given time
    corecore