72 research outputs found

    Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease

    Get PDF
    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects

    Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration

    Get PDF
    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types

    Receptor Heteromerization Expands the Repertoire of Cannabinoid Signaling in Rodent Neurons

    Get PDF
    A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling

    A Rapid and Sensitive Method for Measuring NAcetylglucosaminidase Activity in Cultured Cells

    Get PDF
    A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4- Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies

    In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer

    Get PDF
    © The Author(s), 2017. Background Hypoxia is a characteristic of breast tumours indicating poor prognosis. Based on the assumption that those genes which are up-regulated under hypoxia in cell-lines are expected to be predictors of poor prognosis in clinical data, many signatures of poor prognosis were identified. However, it was observed that cell line data do not always concur with clinical data, and therefore conclusions from cell line analysis should be considered with caution. As many transcriptomic cell-line datasets from hypoxia related contexts are available, integrative approaches which investigate these datasets collectively, while not ignoring clinical data, are required. Results We analyse sixteen heterogeneous breast cancer cell-line transcriptomic datasets in hypoxia-related conditions collectively by employing the unique capabilities of the method, UNCLES, which integrates clustering results from multiple datasets and can address questions that cannot be answered by existing methods. This has been demonstrated by comparison with the state-of-the-art iCluster method. From this collection of genome-wide datasets include 15,588 genes, UNCLES identified a relatively high number of genes (>1000 overall) which are consistently co-regulated over all of the datasets, and some of which are still poorly understood and represent new potential HIF targets, such as RSBN1 and KIAA0195. Two main, anti-correlated, clusters were identified; the first is enriched with MYC targets participating in growth and proliferation, while the other is enriched with HIF targets directly participating in the hypoxia response. Surprisingly, in six clinical datasets, some sub-clusters of growth genes are found consistently positively correlated with hypoxia response genes, unlike the observation in cell lines. Moreover, the ability to predict bad prognosis by a combined signature of one sub-cluster of growth genes and one sub-cluster of hypoxia-induced genes appears to be comparable and perhaps greater than that of known hypoxia signatures. Conclusions We present a clustering approach suitable to integrate data from diverse experimental set-ups. Its application to breast cancer cell line datasets reveals new hypoxia-regulated signatures of genes which behave differently when in vitro (cell-line) data is compared with in vivo (clinical) data, and are of a prognostic value comparable or exceeding the state-of-the-art hypoxia signatures.Dr. Abu-Jamous would like to acknowledge the financial assistance from Brunel University London. Professors Buffa and Harris acknowledge support from Cancer Research UK, EU framework 7, and the Oxford NIHR Biomedical Research Centre. Professor Harris acknowledges support from the Breast Cancer Research Foundation. Professor Nandi would like to acknowledge that this work was partly supported by the National Science Foundation of China grant number 61520106006 and the National Science Foundation of Shanghai grant number 16JC1401300. The funding bodies have no role in the design of the study, in the collection, analysis, and interpretation of data, or in writing the manuscript

    Substrate reduction therapy for glycosphingolipid storage disorders.

    No full text
    Substrate reduction therapy is a novel approach to treating glycosphingolipid (GSL) lysosomal storage disorders. These diseases are caused by mutations in the genes coding for enzymes involved in GSL catabolism and are characterised by the accumulation of GSL substrates within the lysosomes of cells. The aim of substrate reduction therapy is to inhibit the rate of synthesis of GSLs to levels where the residual activity of the mutant catabolic enzyme is sufficient to prevent pathological storage. In this review we discuss the development of N-butyldeoxynojirimycin (NB-DNJ), an imino sugar that inhibits the ceramide-specific glucosyltransferase which catalyses the first committed step of GSL synthesis. This agent has been shown to slow accumulation of stored glycolipid in an in vitro model of Gaucher's disease and in knockout mouse models of Tay-Sachs and Sandhoff diseases. Furthermore, administration of NB-DNJ to Sandhoff mice delays the onset of neurological disease and also slows its progression. We discuss safety and efficacy data from the clinical trial of substrate reduction with NB-DNJ which has been undertaken in patients with Type 1 Gaucher's disease. This trial provides a proof-of-principle for the use of this approach in a wide range of GSL lysosomal storage diseases

    Treating lysosomal storage disorders: current practice and future prospects.

    Get PDF
    There are over 40 human disease states that are caused by defects in various aspects of lysosomal function. Over the past two decades there has been dramatic progress in the development and evaluation of therapies for lysosomal storage disorders, several of which are now in routine clinical use or in clinical trials. The greatest current challenge is in developing effective therapies for treating the CNS manifestations of these complex disorders. In this article, we will review the current therapies/approaches being considered for treating lysosomal storage diseases and give a perspective on the scientific, medical, social and ethical issues they raise

    Molecular and functional characterization of new pathogenic mutations in mitochondrial ornithine and aspartate/glutamate transporters

    No full text
    Mutations in the SLC25A13 gene, coding for a liver-specific isoform of the mitochondrial aspartate/glutamate carrier (AGC2), and in the SLC25A15 gene, coding for ornithine carrier isoform 1 (ORC1), cause type 2 citrullinemia (CTLN2) and hyperornithinemia–hyperammonemia–homocitrullinuria (3H syndrome), respectively. The aim of this work was to identify and characterize novel mutations of these two genes in patients presenting symptoms suggestive of AGC2 or ORC1 deficiency. In the AGC2 transcript of a Pakistani man living in Europe suspected of being affected by CTLN2 (a highly prevalent disease in Southeast Asia), a homozygous mutation, c.1763GNA, was found which produces an R588Q change in the protein. In the ORC1 transcript of patients suspected of 3H syndrome andhaving different ethnic origin, six new homozygous mutations (c.110TNG, c.212TNA, c.337GNT, c.815CNT, c.818TNA and c.847CNT) were found that produce M37R, L71Q, G113C, T272I, M273K and L283F substitutions, respectively, in the protein. Each mutation was functionally characterized in liposomes reconstituted with AGC2 or ORC1 carrying the above-mentioned amino acid replacement. They all reduced transport activity by approximately 90% in comparison to the activity of the wild-type proteins suggesting that they are diseasecausing mutations
    corecore