75 research outputs found

    Heme metabolism genes Downregulated in COPD Cachexia.

    Get PDF
    IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage

    In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Get PDF
    Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative perspective on research investigating the various components of HPA axis functioning among depressed young people. The present narrative review synthesizes evidence from the following five categories of studies conducted with children and adolescents: (1) those examining the HPA system’s response to the dexamethasone suppression test (DST); (2) those assessing basal HPA axis functioning; (3) those administering corticotropin-releasing hormone (CRH) challenge; (4) those incorporating psychological probes of the HPA axis; and (5) those examining HPA axis functioning in children of depressed mothers. Evidence is generally consistent with models of developmental psychopathology that hypothesize that atypical HPA axis functioning precedes the emergence of clinical levels of depression and that the HPA axis becomes increasingly dysregulated from child to adult manifestations of depression. Multidisciplinary approaches and longitudinal research designs that extend across development are needed to more clearly and usefully elucidate the role of the HPA axis in depression
    corecore