71 research outputs found
Recommended from our members
Kernel reconstruction for delayed neural field equations
Understanding the neural field activity for realistic living systems is a challenging task in contemporary neuroscience. Neural fields have been studied and developed theoretically and numerically with considerable success over the past four decades. However, to make effective use of such models, we need to identify their constituents in practical systems. This includes the determination of model parameters and in particular the reconstruction of the underlying effective connectivity in biological tissues. In this work, we provide an integral equation approach to the reconstruction of the neural connectivity in the case where the neural activity is governed by a delay neural field equation. As preparation, we study the solution of the direct problem based on the Banach fixed point theorem. Then we reformulate the inverse problem into a family of integral equations of the first kind. This equation will be vector valued when several neural activity trajectories are taken as input for the inverse problem. We employ spectral regularization techniques for its stable solution. A sensitivity analysis of the regularized kernel reconstruction with respect to the input signal u is carried out, investigating the Frechet differentiability of the kernel with respect to the signal. Finally, we use numerical examples to show the feasibility of the approach for kernel reconstruction, including numerical sensitivity tests, which show that the integral equation approach is a very stable and promising approach for practical computational neuroscience
Bifunctional Avidin with Covalently Modifiable Ligand Binding Site
The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces
Microstructural evolution and trace element mobility in Witwatersrand pyrite
Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing
Corticotropin Releasing Factor-Induced CREB Activation in Striatal Neurons Occurs via a Novel Gβγ Signaling Pathway
The peptide corticotropin-releasing factor (CRF) was initially identified as a critical component of the stress response. CRF exerts its cellular effects by binding to one of two cognate G-protein coupled receptors (GPCRs), CRF receptor 1 (CRFR1) or 2 (CRFR2). While these GPCRs were originally characterized as being coupled to Gαs, leading to downstream activation of adenylyl cyclase (AC) and subsequent increases in cAMP, it has since become clear that CRFRs couple to and activate numerous other downstream signaling cascades. In addition, CRF signaling influences the activity of many diverse brain regions, affecting a variety of behaviors. One of these regions is the striatum, including the nucleus accumbens (NAc). CRF exerts profound effects on striatal-dependent behaviors such as drug addiction, pair-bonding, and natural reward. Recent data indicate that at least some of these behaviors regulated by CRF are mediated through CRF activation of the transcription factor CREB. Thus, we aimed to elucidate the signaling pathway by which CRF activates CREB in striatal neurons. Here we describe a novel neuronal signaling pathway whereby CRF leads to a rapid Gβγ- and MEK-dependent increase in CREB phosphorylation. These data are the first descriptions of CRF leading to activation of a Gβγ-dependent signaling pathway in neurons, as well as the first description of Gβγ activation leading to downstream CREB phosphorylation in any cellular system. Additionally, these data provide additional insight into the mechanisms by which CRF can regulate neuronal function
Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties
Current and prospective pharmacological targets in relation to antimigraine action
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
Italian guidelines for primary headaches: 2012 revised version
The first edition of the Italian diagnostic and therapeutic guidelines for primary headaches in adults was published in J Headache Pain 2(Suppl. 1):105–190 (2001). Ten years later, the guideline committee of the Italian Society for the Study of Headaches (SISC) decided it was time to update therapeutic guidelines. A literature search was carried out on Medline database, and all articles on primary headache treatments in English, German, French and Italian published from February 2001 to December 2011 were taken into account. Only randomized controlled trials (RCT) and meta-analyses were analysed for each drug. If RCT were lacking, open studies and case series were also examined. According to the previous edition, four levels of recommendation were defined on the basis of levels of evidence, scientific strength of evidence and clinical effectiveness. Recommendations for symptomatic and prophylactic treatment of migraine and cluster headache were therefore revised with respect to previous 2001 guidelines and a section was dedicated to non-pharmacological treatment. This article reports a summary of the revised version published in extenso in an Italian version
- …