12 research outputs found

    Quantificação de citocinas no soro e homogenato da pata na intoxicação experimental com veneno de Bothropoides jararaca em ratos Wistar tratados com soroterapia e Mikania glomerata

    No full text
    This experiment aimed to quantify the pro-inflammatory cytokine levels, including TNF-α, interleukin-1β (IL-1β) and IL-6 as well as the anti-inflammatory ones such as IL-10 and INF-γ. It was also proposed to compare the effect of the conventional treatment to a treatment in which was added the Mikania glomerata plant in the experimental intoxication using Bothropoides jararaca venom. It was used Wistar rats that were randomly divided into 3 groups: C - control; VB - Bothrops venom + antivenom serum; and VBM - Bothrops venom + antivenom serum + Mikania glomerata. Cytokines were quantified in the serum and paw homogenate using ELISA test in three different moments (M1- 30 minutes, M2- 6 hours and M3- 24 hours after venom injection). The intoxication by Bothropoides jararaca venoms mainly stimulated the production of IL-6 in the serum and TNF-α, IL-1β, IL-6 in paw homogenate of animals experimentally intoxicated. Adjunctive treatment with the extract of the Mikania glomerata plant mainly influenced the production of IL-6, IL-10 and IFN-γ in the serum and IL-6, IL1β and IFN-γ in paw homogenate. Further research is necessary with the extract of Mikania glomerata in order to understand the action of this plant on the Bothropoides poisoning and also to verify the best way to manage it.O presente estudo teve como objetivo quantificar os níveis de citocinas pró-inflamatórias, entre as quais TNF-α, interleucina-1β (IL-1β), IL-6, e anti-inflamatórias, como IL-10, interferon-γ (INF-γ), bem como comparar o efeito do tratamento convencional com o efeito do tratamento complementado pelo extrato da planta Mikania glomerata, na intoxicação experimental por Bothropoides jararaca. Foram usados ratos Wistar,divididos em três grupos: C - controle, VB - veneno botrópico + soro antiofídico e VBM - veneno botrópico + soro antiofídico + Mikania glomerata. As citocinas foram quantificadas, no soro e no homogenato desses animais, pelo teste ELISA, em três momentos (M1 - 30 minutos, M2 - seis horas e M3 - 24 horas após a inoculação do veneno). Os resultados obtidos evidenciaram que a intoxicação por veneno botrópico estimula principalmente a produção de IL-6 no soro e TNF-α, IL-1β, IL-6 no homogenato da pata de animais experimentalmente intoxicados. O tratamento complementar, com o extrato da planta Mikania glomerata, teve influência principalmente na produção de IL-6, IL-10 e IFN-γ no soro e IL-6, IL-1β e IFN-γ no homogenato. Porém, são necessários novos estudos com o extrato de Mikania glomerata para que se possa entender a ação dessa planta sobre a intoxicação botrópica, bem como verificar qual a melhor via para administrá-lo.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Functional and structural studies of a Phospholipase A2-like protein complexed to zinc ions: Insights on its myotoxicity and inhibition mechanism

    No full text
    One of the main challenges in snakebite envenomation treatment is the development of stable, versatile and efficient anti-venom therapies. Local myotoxicity in accidents involving snakes from the Bothrops genus is still a consequence of serum therapy inefficient neutralization that may lead to permanent sequelae in their victims. One of the classes of toxins that participate in muscle necrosis is the PLA2-like proteins. The aim of this work was to investigate the role of zinc ions in the inhibition of PLA2-like proteins and to advance the current knowledge of their action mechanism. Methods Myographic and electrophysiological techniques were used to evaluate the inhibitory effect of zinc ions, isothermal titration calorimetry assays were used to measure the affinity between zinc ions and the toxin and X-ray crystallography was used to reveal details of this interaction. Results We demonstrated that zinc ions can effectively inhibit the toxin by the interaction with two different sites, which are related to two different mechanism of inhibition: preventing membrane disruption and impairing the toxin state transition. Furthermore, structural study presented here included an additional step in the current myotoxic mechanism improving the comprehension of the allosteric transition that PLA2-like proteins undergo to exert their function. Conclusions Our findings show that zinc ions are inhibitors of PLA2-like proteins and suggest two different mechanisms of inhibition for these ions. General significance Zinc is a new candidate that can assist in anti-venom treatments and can promote the design of new and even more accurate structure-based inhibitors for PLA2-like proteins.1861131993209CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP300596/2013-81592/20112015/17286-0; 2013/00873-

    The Neuromuscular Activity Of Bothriopsis Bilineata Smaragdina (forest Viper) Venom And Its Toxin Bbil-tx (asp49 Phospholipase A2) On Isolated Mouse Nerve-muscle Preparations

    No full text
    The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca2+ solution, venom (3 μg/ml) caused a quadriphasic response in PND twitch height whilst at 10 μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca2+, Bbil-TX [210 nM (3 μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10 μg/ml) and Bbil-TX (210 nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1 nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10 μg/ml) and Bbil-TX (210 nM) significantly reduced the perineural waveform associated with the outward K+ current while the amplitude of the inward Na+ current was not significantly affected. Bbil-TX (210 nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca2+ solution. Venom (3 μg/ml) and toxin (210 nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca2+ solution. In normal Ca2+, the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10 μg/ml) caused an immediate increase in intracellular Ca2+ followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K+ channel activity and presynaptic protein expression.962437Borja-Oliveira, C.R., Kassab, B.H., Soares, A.M., Toyama, M.H., Giglio, J.R., Marangoni, S., Re, L., Rodrigues-Simioni, L., Purification and N-terminal sequencing of two presynaptic neurotoxic PLA2, neuwieditoxin-I and neuwieditoxin-II, from Bothrops neuwiedi pauloensis (jararaca pintada) venom (2007) J. Venom. Anim. Toxins Incl. Trop. Dis., 13, pp. 103-121Braga, M.F., Anderson, A.J., Harvey, A.L., Rowan, E.G., Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium (1992) Br. J. Pharmacol., 106, pp. 91-94Calgarotto, A.K., Damico, D.C.S., Ponce-Soto, L.A., Baldasso, P.A., Da Silva, S.L., Souza, G.H.M.F., Eberlin, M.N., Marangoni, S., Biological and biochemical characterization of a new basic phospholipase A2 BmTX-I isolated from Bothrops moojeni snake venom (2008) Toxicon, 51, pp. 1509-1519Campbell, J.A., Lamar, W.W., (2004) Venomous Reptiles of the Western Hemisphere, 2. , Comstock Publishing Associates/Cornell University Press IthacaCarregari, V.C., Floriano, R.S., Rodrigues-Simioni, L., Winck, F.V., Baldasso, P.A., Ponce-Soto, L.A., Marangoni, S., Biochemical, pharmacological, and structural characterization of new basic PLA2 Bbil-TX from Bothriopsis bilineata snake venom (2013) BioMed. Res. Int., 2013. , Article ID 612649, 12 pagesChang, C.C., Su, M.J., Presynaptic toxicity of the histidine-modified, phospholipase A2-inactive β-bungarotoxin, crotoxin and notexin (1982) Toxicon, 20, pp. 895-905Chang, C.C., Lee, J.D., Eaker, D., Fohlman, J., The presynaptic neuromuscular blocking action of taipoxin. A comparison with β-bungarotoxin and crotoxin (1977) Toxicon, 15, pp. 571-576Cogo, J.C., Prado-Franceschi, J., Cruz-Höfling, M.A., Corrado, A.P., Rodrigues-Simioni, L., Effect of Bothrops insularis venom on the mouse and chick nerve-muscle preparation (1993) Toxicon, 31, pp. 1237-1247Cogo, J.C., Lilla, S., Souza, G.H.M.F., Hyslop, S., Nucci, G., Purification, sequencing and structural analysis of two acidic phospholipases A2 from the venom of Bothrops insularis (jararaca ilhoa) (2006) Biochimie, 88, pp. 1947-1959Correia-De-Sá, P., Noronha-Matos, J.B., Timóteo, M.A., Ferreirinha, F., Marques, P., Soares, A.M., Carvalho, C., Gallacci, M., Bothropstoxin-I reduces evoked acetylcholine release from rat motor nerve terminals: Radiochemical and real-time video-microscopy studies (2013) Toxicon, 61, pp. 16-25Dal Belo, C.A., Leite, G.B., Toyama, M.H., Marangoni, S., Corrado, A.P., Fontana, M.D., Southand, A., Rodrigues-Simioni, L., Pharmacological and structural characterization of a novel phospholipase A2 from Micrurus dumerilii carinicauda venom (2005) Toxicon, 46, pp. 736-750Dempster, J., Computer analysis of electrophysiological signals (1988) Microcomputers in Physiology: A Practical Approach, pp. 51-93. , P.J. Frazer, IRL Press OxfordDixon, R.W., Harris, J.B., Nerve terminal damage by β-bungarotoxin - Its clinical significance (1999) Am. J. Pathol., 154, pp. 447-455Dreyer, F., Penner, R., The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals (1987) J. Physiol., 386, pp. 455-463Dumitru, D., Amato, A.A., (2008) Neuromuscular Disorders, pp. 1127-1212. , McGraw-Hill Education Columbus, OHFaiz, A., Ghose, A., Ahsan, F., Rahman, R., Amin, R., Hassan, M.U., Chowdhury, A.W., Warrell, D.A., The greater black krait (Bungarus niger), a newly recognized cause of neuro-myotoxic snake bite envenoming in Bangladesh (2010) Brain, 133, pp. 3181-3193Fatehi, M., Harvey, A.L., Rowan, E.G., Characterisation of the effects of depolarising toxins on nerve terminal action potentials: Apparent block of presynaptic potassium currents (1998) Toxicon, 36, pp. 115-129Fathi, B., Rowan, E.G., Harvey, A.L., The facilitatory actions of snake venom phospholipase A2 neurotoxins at the neuromuscular junction are not mediated through voltage-gated K+ channels (2001) Toxicon, 39, pp. 1871-1882Fathi, B., Harvey, A.L., Rowan, E.G., The effect of temperature on the effects of the phospholipase A2 neurotoxins β-bungarotoxin and taipoxin at the neuromuscular junction (2013) Toxicon, 70, pp. 86-89Floriano, R.S., Carregari, V.C., Abreu, V.A., Kenzo-Kagawa, B., Ponce-Soto, L.A., Cruz-Höfling, M.A., Hyslop, S., Rodrigues-Simioni, L., Pharmacological study of a new Asp49 phospholipase A2 (Bbil-TX) isolated from Bothriopsis bilineata smargadina (forest viper) venom in vertebrate neuromuscular preparations (2013) Toxicon, 69, pp. 191-199Fohlman, J., Eaker, D., Karlsson, E., Thesleff, S., Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus S. Scutellatus) (1976) Eur. J. Biochem., 68, pp. 457-469França, F.O.S., Málaque, C.M.S., Acidente botrópico (2003) Animais Peçonhentos No Brasil: Biologia, Clínica e Terapêutica Dos Acidentes, pp. 72-86. , J.L.C. Cardoso, F.O.S. França, F.H. Wen, C.M.S. Málaque, V. Haddad Jr. Sarvier/FAPESP São PauloGalbiatti, C., Rocha, T., Randazzo-Moura, P., Ponce-Soto, L.A., Marangoni, S., Cruz-Höfling, M.A., Rodrigues-Simioni, L., Pharmacological and partial biochemical characterization of a new non-myotoxic neurotoxic PLA2 (Bmaj-9) isolated from Bothrops marajoensis snake venom (2012) J. Venom. Anim. Toxins Incl. Trop. Dis., 18, pp. 62-72Gallacci, M., Cavalcante, W.L., Understanding the in vitro neuromuscular activity of snake venom Lys49 phospholipase A2 homologues (2010) Toxicon, 55, pp. 1-11Harris, J.B., Neuron to nerve terminals: Aspects of neuropathology and toxinology (2006) Braz. J. Morphol. Sci., 23, pp. 195-216Harvey, A.L., Marshall, R.J., Karlsson, E., Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations (1982) Toxicon, 20, pp. 379-396Lin-Shiau, S.Y., Fu, W.M., Liu, S.H., Ni, C.T., Studies on contractures induced in mouse diaphragm by caffeine and cupric and selenite ions (1989) Arch. Int. Pharmacodyn. Ther., 300, pp. 265-280Logantha, S.J.R.J., Cruickshank, S.F., Rowan, E.G., Drummond, R.M., Spontaneous and electrically evoked Ca2+ transients in cardiomyocytes of the rat pulmonary vein (2010) Cell Calcium, 48, pp. 150-160Lomonte, B., Angulo, Y., Calderón, L., An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action (2003) Toxicon, 42, pp. 885-901McArdle, J.J., Angaut-Petit, D., Mallart, A., Bournaud, R., Faille, L., Brigant, J.L., Advantages of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena (1981) J. Neurosci. Methods, 4, pp. 109-115Montecucco, C., Rossetto, O., How do presynaptic PLA2 neurotoxins block nerve terminals? (2000) Trends Biochem. Sci., 25, pp. 266-270Moraes, D.S., De Abreu, V.A., Rostelato-Ferreira, S., Leite, G.B., Cruz-Höfling, M.A., Travaglia-Cardoso, S.R., Hyslop, S., Rodrigues-Simioni, L., Neuromuscular activity of Bothrops alcatraz snake venom in chick biventer cervicis preparations (2012) Toxicon, 59, pp. 294-299Oshima-Franco, Y., Leite, G.B., Belo, C.A., Hyslop, S., Prado-Franceschi, J., Cintra, A.C., Giglio, J.R., Rodrigues-Simioni, L., The presynaptic activity of bothropstoxin-I, a myotoxin from Bothrops jararacussu snake venom (2004) Basic Clin. Pharmacol. Toxicol., 95, pp. 175-182Penner, R., Dreyer, F., Two different presynaptic calcium currents in mouse nerve terminals (1986) Pflugers Arch., 406, pp. 190-197Ponce-Soto, L.A., Barros, J.C., Marangoni, S., Hernandez, S., Dal Belo, C.A., Corrado, A.P., Hyslop, S., Rodrigues-Simioni, L., Neuromuscular activity of BaTX, a presynaptic basic PLA2 isolated from Bothrops alternatus snake venom (2009) Comp. Biochem. Physiol. C, 150, pp. 291-297Pungerčar, J., Križaj, I., Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2 (2007) Toxicon, 50, pp. 871-892Rocha, T., De Souza, B.M., Palma, M.S., Cruz-Höfling, M.A., Harris, J.B., The neurotoxicological effects of mastoparan Polybia-MPII at the murine neuromuscular junction: An ultrastructural and immunocytochemical study (2009) Histochem. Cell Biol., 132, pp. 395-404Rodrigues-Simioni, L., Zamunér, S.R., Cogo, J.C., Borja-Oliveira, C.R., Prado-Franceschi, J., Cruz-Höfling, M.A., Corrado, A.P., Pharmacological evidence for a presynaptic action of venoms from Bothrops insularis (jararaca ilhoa) and Bothrops neuwiedi (jararaca pintada) (2004) Toxicon, 43, pp. 633-638Rodrigues-Simioni, L., Floriano, R.S., Rostelato-Ferreira, S., Sousa, N.C., Marangoni, S., Ponce-Soto, L.A., Carregari, V.C., Hyslop, S., Presynaptic action of Bothriopsis bilineata smargadina (forest viper) venom in vitro (2011) Toxicon, 58, pp. 140-145Rossetto, O., Montecucco, C., Presynaptic neurotoxins with enzymatic activities (2008) Handb. Exp. Pharmacol., 184, pp. 129-170Rossetto, O., Rigoni, M., Montecucco, C., Different mechanism of blockade of neuroexocytosis by presynaptic neurotoxins (2004) Toxicol. Lett., 149, pp. 91-101Rowan, E.G., What does β-bungarotoxin do at the neuromuscular junction? (2001) Toxicon, 39, pp. 107-118Rowan, E.G., Harvey, A.L., Potassium channel blocking actions of β-bungarotoxin and related toxins on mouse and frog motor nerve terminals (1988) Br. J. Pharmacol., 94, pp. 839-847Rowan, E.G., Pemberton, K.E., Harvey, A.L., On the blockade of acetylcholine release at mouse motor nerve terminals by β-bungarotoxin and crotoxin (1990) Br. J. Pharmacol., 100, pp. 301-304Simpson, L.L., Lautenslager, G.T., Kaiser, I.I., Middlebrook, J.L., Identification of the site at which phospholipase A2 neurotoxins localise to produce their neuromuscular blocking effects (1993) Toxicon, 31, pp. 13-26Soares, A.M., Giglio, J.R., Chemical modifications on phospholipases A2 from snake venoms: Effects on catalytic and pharmacological properties (2003) Toxicon, 42, pp. 855-868Su, M.J., Chang, C.C., Presynaptic effects of snake venom toxins which have phospholipase A2 activity (β-bungarotoxin, taipoxin, crotoxin) (1984) Toxicon, 22, pp. 631-640Tedesco, E., Rigonia, M., Caccin, P., Grishin, E., Rossetto, O., Montecucco, C., Calcium overload in nerve terminals of cultured neurons intoxicated by α-latrotoxin and snake PLA2 neurotoxins (2009) Toxicon, 54, pp. 138-144Warrell, D.A., Snakebites in Central and South America: Epidemiology, clinical features and clinical management (2004) Venomous Reptiles of the Western Hemisphere, 2, pp. 709-761. , J.A. Campbell, W.W. Lamar, Comstock Publishing Associates/Cornell University Press IthacaZamunér, S.R., Cruz-Höfling, M.A., Corrado, A.P., Hyslop, S., Rodrigues-Simioni, L., Comparison of the neurotoxic and myotoxic effects of Brazilian Bothrops venoms and their neutralization by commercial antivenom (2004) Toxicon, 44, pp. 259-27
    corecore