33 research outputs found

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Thin film hexagonal gold grids as transparent conducting electrodes in organic light emitting diodes

    No full text
    Indium Tin Oxide (ITO) coated glass is currently the preferred transparent conducting electrode (TCE) for organic light emitting diodes (OLEDs). However, ITO has its drawbacks, not least the scarcity of Indium, high processing temperatures, and inflexibility. A number of technologies have been put forward as replacements for ITO. In this paper, an OLED based on a gold grid TCE is demonstrated, the light emission through the grid is examined, and luminance and current measurements are reported. The gold grid has a sheet resistance of 15 Ω▥-1 and a light transmission of 63 % at 550 nm, comparable to ITO, but with advantages in terms of processing conditions and cost. The gold grid OLED has a lower turn-on voltage (7.7 V versus 9.8 V) and achieves a luminance of 100 cdm-2 at a lower voltage (10.9 V versus 12.4 V) than the reference ITO OLED. The lower turn-on voltage and the uniformity of the light output through the gold grid TCE are discussed, and the conduction mechanisms in the ITO and gold grid TCE OLEDs are examined

    Hybrid metal grid-polymer-carbon nanotubes electrodes for high luminance organic light emitting diodes

    Get PDF
    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid transparent conducting electrode (TCE) composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18,000 cd/m2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8,260 cd/m2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics (OPVs). For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed

    Storage Lifetime of Polymer-Carbon Nanotube Inks for Use as Charge Transport Layers in Organic Light Emitting Diodes

    No full text
    The long-term stability of multi-wall carbon nanotubes (MWCNT) mixed with the hole-transport polymer Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been examined. These surfactant stabilised solutions, used as transport layers in organic light emitting diodes (OLEDs), are shown to be stable for periods of up to fifteen months, and show no signs of degrading soon after this time. In comparison, non-stabilised aqueous MWCNT solutions have been shown to aggregate within 30 minutes of production, and, although these aggregates can be re-dispersed, the solution displays an increase in smaller aggregates over time which cannot subsequently be re-dispersed by manual agitation. The stable MWCNT/PEDOT:PSS solutions have been used in ink-jet printing and as composite MWCNT/PEDOT:PSS films suitable as charge transport layers in spin coated organic light emitting diodes

    Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes

    No full text
    Increasing the efficiency and lifetime of polymer light emitting diodes (PLEDs) requires a balanced injection and flow of charges through the device, driving demand for cheap and effective electron transport/hole blocking layers. Some materials, such as conjugated polyelectrolytes, have been identified as potential candidates but the production of these materials requires complex, and hence costly, synthesis routes. We have utilized a soluble small molecule naphthalene diimide derivative (DC18) as a novel electron transport/hole blocking layer in common PLED architectures, and compared its electronic properties to those of the electron transport/hole blocking small molecule bathocuproine (BCP). PLEDs incorporating DC18 as the electron transport layer reduce turn on voltage by 25%; increase brightness over three and a half times; and provide a full five-fold enhancement in efficiencies compared to reference devices. While DC18 has similar properties to the effective conjugated polyelectrolytes used as electron transport layers, it is simpler to synthesise, reducing cost while retaining favourable electron transport properties, and producing a greater degree of efficiency enhancement. The impact on device lifetime is hypothesized to be significant as well, due to the air-stability seen in many naphthalene diimide derivatives

    Silver Grid Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Get PDF
    Polymer organic light emitting diodes (OLEDs) were fabricated using thin silver hexagonal grids replacing indium tin oxide (ITO) as the transparent conducting electrodes (TCE). Previous literature has assumed that thick metal grids (several hundred nanometres thick) with a lower sheet resistance ( 80 %) compared to thinner grids would lead to OLEDs with better performance than when thinner metal grid lines are used. This assumption is critically examined using OLEDs on various metal grids with different thicknesses and studying their performances. The experimental results show that a 20 nm thick silver grid TCE resulted in more efficient OLEDs with higher luminance (10 cd/A and 1460 cd/m2 at 6.5 V) than a 111 nm thick silver grid TCE (5 cd/A and 159 cd/m2 at 6.5 V). Furthermore, the 20 nm thick silver grid OLED has a higher luminous efficiency than the ITO OLED (6 cd/A and 1540 cd/m2 at 6.5 V) at low voltages. The data shows that thinner metal grid TCEs (about 20 nm) make the most efficient OLEDs, contrary to previous expectations
    corecore