10,100 research outputs found

    Some n-p (Hg,Cd)Te photodiodes for 8-14 micrometer heterodyne applications

    Get PDF
    The results describing the dc and CO2 laser heterodyne characteristics of a three element photodiode array and single element and four element photodiode arrays are presented. The measured data shows that the n(+)-p configuration is capable of achieving bandwidths of 475 to 725 MHz and noise equivalent powers of 3.2 x 10 to the minus 20th power W/Hz at 77 K and 1.0 x 10 to the minus 19th power W/Hz at 145 K. The n(+)-n(-)-p photodiodes exhibited wide bandwidths (approximately 2.0 GHz) and fairly good effective heterodyne quantum efficiencies (approximately 13-30 percent at 2.0 GHz). Noise equivalent powers ranging from 1.44 x 10 to the minus 19th power W/Hz to 6.23 x 10 to the minus 20th power W/Hz were measured at 2.0 GHz

    A functional analysis of change propagation

    Get PDF
    A thorough understanding of change propagation is fundamental to effective change management during product redesign. A new model of change propagation, as a result of the interaction of form and function is presented and used to develop an analysis method that determines how change is likely to propagate. The analysis produces a Design Structure Matrix, which clearly illustrates change propagation paths and highlights connections that could otherwise be ignored. This provides the user with an in-depth knowledge of product connectivity, which has the potential to support the design process and reduce the product's susceptibility to future change

    Transient resonances in the inspirals of point particles into black holes

    Get PDF
    We show that transient resonances occur in the two body problem in general relativity, in the highly relativistic, extreme mass-ratio regime for spinning black holes. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. Corrections to the gravitational wave signal's phase due to resonance effects scale as the square root of the inverse of mass of the small body, and thus become large in the extreme-mass-ratio limit, dominating over all other post-adiabatic effects. The resonances make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. It is hoped to exploit observations of these sources to map the spacetime geometry of black holes. However, such mapping will require accurate models of binary dynamics, which is a computational challenge whose difficulty is significantly increased by resonance effects. We estimate that the resonance phase shifts will be of order a few tens of cycles for mass ratios ∼10−6\sim 10^{-6}, by numerically evolving fully relativistic orbital dynamics supplemented with an approximate, post-Newtonian self-force.Comment: 4 pages, 1 figure, minor correction

    Ionization Structure and the Reverse Shock in E0102-72

    Get PDF
    The young oxygen-rich supernova remnant E0102-72 in the Small Magellanic Cloud has been observed with the High Energy Transmission Grating Spectrometer of Chandra. The high resolution X-ray spectrum reveals images of the remnant in the light of individual emission lines of oxygen, neon, magnesium and silicon. The peak emission region for hydrogen-like ions lies at larger radial distance from the SNR center than the corresponding helium-like ions, suggesting passage of the ejecta through the "reverse shock". We examine models which test this interpretation, and we discuss the implications.Comment: 4 pages, 6 figures; To appear in "Young Supernova Remnants" (11th Annual Astrophysics Conference in Maryland), S. S. Holt & U. Hwang (eds), AIP, New York (2001

    Abstract Interpretation of Stateful Networks

    Full text link
    Modern networks achieve robustness and scalability by maintaining states on their nodes. These nodes are referred to as middleboxes and are essential for network functionality. However, the presence of middleboxes drastically complicates the task of network verification. Previous work showed that the problem is undecidable in general and EXPSPACE-complete when abstracting away the order of packet arrival. We describe a new algorithm for conservatively checking isolation properties of stateful networks. The asymptotic complexity of the algorithm is polynomial in the size of the network, albeit being exponential in the maximal number of queries of the local state that a middlebox can do, which is often small. Our algorithm is sound, i.e., it can never miss a violation of safety but may fail to verify some properties. The algorithm performs on-the fly abstract interpretation by (1) abstracting away the order of packet processing and the number of times each packet arrives, (2) abstracting away correlations between states of different middleboxes and channel contents, and (3) representing middlebox states by their effect on each packet separately, rather than taking into account the entire state space. We show that the abstractions do not lose precision when middleboxes may reset in any state. This is encouraging since many real middleboxes reset, e.g., after some session timeout is reached or due to hardware failure
    • …
    corecore