16 research outputs found

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice

    Get PDF
    Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrPC, efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrPC selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrPSc and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories

    Chemical composition and in vitro ruminal fermentation of selected grasses in the semiarid savannas of Swaziland

    No full text
    Little is known about the grass species type, composition and nutritive value in the semiarid savannas that sustain most of Swaziland\'s cattle population through the seven-month-long dry season. This study was conducted to investigate the nutritional characteristics of grasses collected from two grazing areas (Big Bend and Simunye), which differed mainly in soil types. Mature grass species were harvested and evaluated for chemical composition (organic matter, neutral detergent fibre [NDF], acid detergent fibre [ADF], crude protein [CP] and minerals) and in vitro ruminal fermentation (in vitro gas production, in vitro organic matter degradability and partitioning factors). The most common grass species in the Big Bend grazing area were Bothriochloa insculpta, Cenchrus ciliaris and Urochloa mosambicensis. In the Simunye grazing area the most common species were B. insculpta, U. mosambicensis, Heteropogon contortus, Panicum deustum and P. maximum. For grasses harvested from Simunye, the most (p 0.05) in their Mg, P, Cu, Fe, Zn, CP and NDF content. However, U. mosambicensis had the highest (p < 0.05) ADF content. The least fermentation efficiency (partitioning factor = 2.2 mg degradable organic matter [DOM] ml–1 gas) was observed for U. mosambicensis as a result of low DOM coupled with high cumulative gas production. It was concluded that all the grasses investigated in this study show a deficit for Ca, P and protein. Therefore, supplementation is needed to ensure maximum forage utilisation and to satisfy nutrient requirements of ruminant livestock. Keywords: cumulative gas production; organic matter degradability; ruminant livestock; tropical grass speciesAfrican Journal of Range & Forage Science 2009, 26(1): 9–1

    Identification of multiple integrin β1 homologs in zebrafish (<it>Danio rerio</it>)

    No full text
    Abstract Background Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. Results Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. Conclusion Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions.</p

    Pathogenesis of prion diseases: current status and future outlook.

    Full text link
    The prion, a conformational variant of a host protein, is the infectious particle responsible for transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals. The principal target of prion pathology is the brain, yet most TSEs also display prion replication at extra-cerebral locations, including secondary lymphoid organs and sites of chronic inflammation. Despite significant progress in our understanding of this infectious agent, many fundamental questions relating to the nature of the prion, including the mechanism of replication and the molecular events underlying brain damage, remain unanswered. Here we focus on the unresolved issues pertaining to prion pathogenesis, particularly on the role played by the immune system
    corecore