10 research outputs found

    Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry

    Get PDF
    The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1

    Another look at category effects on colour perception and their left hemispheric lateralisation: no evidence from a colour identification task

    Get PDF
    The present study aimed to replicate category effects on colour perception and their lateralisation to the left cerebral hemisphere (LH). Previous evidence for lateralisation of colour category effects has been obtained with tasks where a differently coloured target was searched within a display and participants reported the lateral location of the target. However, a left/right spatial judgment may yield LH-laterality effects per se. Thus, we employed an identification task that does not require a spatial judgment and used the same colour set that previously revealed LH-lateralised category effects. The identification task was better performed with between-category colours than with within-category task both in terms of accuracy and latency, but such category effects were bilateral or RH-lateralised, and no evidence was found for LH-laterality effects. The accuracy scores, moreover, indicated that the category effects derived from low sensitivities for within-blue colours and did not reflect the effects of categorical structures on colour perception. Furthermore, the classic "category effects" were observed in participants\u27 response biases, instead of sensitivities. The present results argue against both the LH-lateralised category effects on colour perception and the existence of colour category effects per se

    Visual demand and visual field presentation influence natural scene processing

    No full text
    International audienceBACKGROUND: Bottom-up and top-down processes are involved in visual analysis of scenes. Here we examined the influence of top-down visual demand on natural scene processing. METHODS: We measured accuracy and response time in adults performing two stimuli-equivalent tasks. Unfiltered, low or high spatial frequency (SF) natural scenes were presented in central, left, or right visual fields (CVF, LVF, RVF). The tasks differed only by the instructed visual demand. In the detection task, participants had to decide whether a scene was present or not. In the categorization task, they had to decide whether the scene was a city or a forest. RESULTS: Higher accuracy was seen for the LVF in the detection task, but for categorization, greater accuracy was seen for the RVF. The interaction between Task and SF revealed coarse-to-fine processing in the categorization task for both accuracy and reaction time, which nearly disappeared in the detection task. Considering the interaction of Task, VF and SF, a left-hemisphere specialisation (i.e., RVF advantage) was observed for the categorisation of HSF scenes for accuracy alone, whereas a LVF advantage was seen for all SFs in the detection task for both accuracy and reaction time. CONCLUSION: Our results revealed that the nature of top-down visual demand is essential to understanding how visual analysis is achieved in each hemisphere. Moreover, this study examining the effects of visual demand, visual field presentation, and SF content of stimuli through the use of ecological stimuli provides a tool to enrich the clinical examination of visual and neurovisual patients

    The Effects of Incidentally Learned Temporal and Spatial Predictability on Response Times and Visual Fixations during Target Detection and Discrimination

    No full text
    Responses are quicker to predictable stimuli than if the time and place of appearance is uncertain. Studies that manipulate target predictability often involve overt cues to speed up response times. However, less is known about whether individuals will exhibit faster response times when target predictability is embedded within the inter-trial relationships. The current research examined the combined effects of spatial and temporal target predictability on reaction time (RT) and allocation of overt attention in a sustained attention task. Participants responded as quickly as possible to stimuli while their RT and eye movements were measured. Target temporal and spatial predictability were manipulated by altering the number of: 1) different time intervals between a response and the next target; and 2) possible spatial locations of the target. The effects of target predictability on target detection (Experiment 1) and target discrimination (Experiment 2) were tested. For both experiments, shorter RTs as target predictability increased across both space and time were found. In addition, the influences of spatial and temporal target predictability on RT and the overt allocation of attention were task dependent; suggesting that effective orienting of attention relies on both spatial and temporal predictability. These results indicate that stimulus predictability can be increased without overt cues and detected purely through inter-trial relationships over the course of repeated stimulus presentations

    Electrical neuroimaging evidence that spatial frequency-based selective attention affects V1 activity as early as 40-60 ms in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Karns and Knight (2009) <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> demonstrated by using ERP and gamma band oscillatory responses that intermodal attention modulates visual processing at the latency of the early phase of the C1 response (62-72 ms) thought to be generated in the primary visual cortex. However, the timing of attentional modulation of visual cortex during object-based attention remains a controversial issue.</p> <p>Results</p> <p>In this study, EEG recording and LORETA source reconstruction were performed. A large number of subjects (29) and of trial repetitions were used (13,312). EEG was recorded from 128 scalp sites at a sampling rate of 512 Hz. Four square-wave gratings (0.75, 1.5, 3, 6 c/deg) were randomly presented in the 4 quadrants of the visual field. Participants were instructed to pay conjoined attention to a given stimulus quadrant and spatial frequency. The C1 and P1 sensory-evoked components of ERPs were quantified by measuring their mean amplitudes across time within 5 latency ranges 40-60, 60-80, 80-100, 100-120 and 120-140 ms.</p> <p>Conclusions</p> <p>Early attention effects were found in the form of an enhanced C1 response (40-80 ms) to frequency-relevant gratings. LORETA, within its spatial resolution limits, identified the neural generators of this effect in the striate cortex (BA17), among other areas.</p

    Divine Understanding and the Divided Brain

    No full text

    Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence

    No full text
    corecore