508 research outputs found

    Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina.

    Get PDF
    Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a(+)RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina

    Development of a non-dairy probiotic fermented product based on almond milk and inulin

    Full text link
    A new fermented almond milk that combined the properties of both almonds and probiotics was considered to cover the current versatile health-promoting foods' demand. Almond milk fermentation with probiotic Lactobacillus reuteri and Streptococcus thermophilus was studied by using a Central Composite design with response surface methodology, and different factors (glucose, fructose, inulin and starters) were optimised to assure high probiotic survivals in the final product. The optimal formulation was physicochemically characterised throughout cold storage (28 days) and both probiotic survivals to invitro digestion and proteolysis were quantified. Results showed that a high probiotic population (>10(7) cfu/mL) was obtained in the previously optimised almond milk throughout storage time, which correspond to the addition of 0.75g of glucose/100mL, 0.75g of fructose/100mL, 2g/100mL inulin and 6mL/100mL inoculum. Glucose was used as the main nutrient and the production of mannitol by L. reuteri was detected. The fermentation process increased the viscosity values, forming a weak gel structure, whose physical properties hardly changed. Probiotic bacteria notably survived (51%) to the invitro digestion, surely related to the inulin presence, which would add value to the developed product by enhancing the potential health benefits of its consumption.This research has been carried out thanks to a funded project by the Universitat Politecnica de Valencia (PAID-05-11-2740). This work was also supported by the Conselleria de Educacion of Valencia government, which granted the author N. Bernat (ACIF/2011).Bernat Pérez, N.; Cháfer Nácher, MT.; Chiralt Boix, MA.; González Martínez, MC. (2015). Development of a non-dairy probiotic fermented product based on almond milk and inulin. International Journal of Food Science and Technology. 21(6):1-14. https://doi.org/10.1177/1082013214543705S114216Aguirre, L., Garro, M. S., & Savoy de Giori, G. (2008). Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chemistry, 111(4), 976-982. doi:10.1016/j.foodchem.2008.05.018Albillos, S. M., Menhart, N., & Fu, T.-J. (2009). Structural Stability of Amandin, a Major Allergen from Almond (Prunus dulcis), and Its Acidic and Basic Polypeptides. Journal of Agricultural and Food Chemistry, 57(11), 4698-4705. doi:10.1021/jf803977zAl-Dabbas. (2010). Acid-Base Buffering Properties of Five Legumes and Selected Food in vitro. American Journal of Agricultural and Biological Sciences, 5(2), 154-160. doi:10.3844/ajabssp.2010.154.160Angelov, A., Gotcheva, V., Kuncheva, R., & Hristozova, T. (2006). Development of a new oat-based probiotic drink. International Journal of Food Microbiology, 112(1), 75-80. doi:10.1016/j.ijfoodmicro.2006.05.015Arskold, E., Lohmeier-Vogel, E., Cao, R., Roos, S., Radstrom, P., & van Niel, E. W. J. (2007). Phosphoketolase Pathway Dominates in Lactobacillus reuteri ATCC 55730 Containing Dual Pathways for Glycolysis. Journal of Bacteriology, 190(1), 206-212. doi:10.1128/jb.01227-07Årsköld, E., Svensson, M., Grage, H., Roos, S., Rådström, P., & van Niel, E. W. J. (2007). Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. International Journal of Food Microbiology, 116(1), 159-167. doi:10.1016/j.ijfoodmicro.2006.12.010Bender FE, Douglas LW, Kramer DS (1989) Statistical methods for food and agriculture, Westport: Avi Publishing Co Inc, pp. 191–221.Bezkorovainy, A. (2001). Probiotics: determinants of survival and growth in the gut. The American Journal of Clinical Nutrition, 73(2), 399s-405s. doi:10.1093/ajcn/73.2.399sBuddington, R. (2009). Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem. Prebiotics and Probiotics Science and Technology, 1-31. doi:10.1007/978-0-387-79058-9_1Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211. doi:10.1016/j.foodres.2005.07.007Champagne, C. P., Green-Johnson, J., Raymond, Y., Barrette, J., & Buckley, N. (2009). Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Research International, 42(5-6), 612-621. doi:10.1016/j.foodres.2008.12.018CHANG, C.-Y., & STONE, M. B. (1990). Effect of Total Soymilk Solids on Acid Production by Selected Lactobacilli. Journal of Food Science, 55(6), 1643-1646. doi:10.1111/j.1365-2621.1990.tb03590.xChurch, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. Journal of Dairy Science, 66(6), 1219-1227. doi:10.3168/jds.s0022-0302(83)81926-2Coccorullo, P., Strisciuglio, C., Martinelli, M., Miele, E., Greco, L., & Staiano, A. (2010). Lactobacillus reuteri (DSM 17938) in Infants with Functional Chronic Constipation: A Double-Blind, Randomized, Placebo-Controlled Study. The Journal of Pediatrics, 157(4), 598-602. doi:10.1016/j.jpeds.2010.04.066Cruz, A. G., Faria, J. A. F., Walter, E. H. M., Andrade, R. R., Cavalcanti, R. N., Oliveira, C. A. F., & Granato, D. (2010). Processing optimization of probiotic yogurt containing glucose oxidase using response surface methodology. Journal of Dairy Science, 93(11), 5059-5068. doi:10.3168/jds.2010-3336Cruz, N. S., Capellas, M., Jaramillo, D. P., Trujillo, A. J., Guamis, B., & Ferragut, V. (2009). Soymilk treated by ultra high-pressure homogenization: Acid coagulation properties and characteristics of a soy-yogurt product. Food Hydrocolloids, 23(2), 490-496. doi:10.1016/j.foodhyd.2008.03.010DE SOUZA OLIVEIRA, R. P., PEREGO, P., CONVERTI, A., & DE OLIVEIRA, M. N. (2009). The effect of inulin as a prebiotic on the production of probiotic fibre-enriched fermented milk. International Journal of Dairy Technology, 62(2), 195-203. doi:10.1111/j.1471-0307.2009.00471.xDonkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2005). Probiotic Strains as Starter Cultures Improve Angiotensin-converting Enzyme Inhibitory Activity in Soy Yogurt. Journal of Food Science, 70(8), m375-m381. doi:10.1111/j.1365-2621.2005.tb11522.xFranck A.*. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87(6), 287-291. doi:10.1079/bjnbjn/2002550Glahn, R. P., Lee, O. A., Yeung, A., Goldman, M. I., & Miller, D. D. (1998). Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an In Vitro Digestion/Caco-2 Cell Culture Model. The Journal of Nutrition, 128(9), 1555-1561. doi:10.1093/jn/128.9.1555Grobben, G. J., Peters, S. W. P. G., Wisselink, H. W., Weusthuis, R. A., Hoefnagel, M. H. N., Hugenholtz, J., & Eggink, G. (2001). Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides Grown in the Presence of Fructose. Applied and Environmental Microbiology, 67(6), 2867-2870. doi:10.1128/aem.67.6.2867-2870.2001Hutchings, J. B. (1999). Colour Measurement of Foods. Food Colour and Appearance, 238-326. doi:10.1007/978-1-4615-2373-4_8Indrio, F., Riezzo, G., Raimondi, F., Bisceglia, M., Cavallo, L., & Francavilla, R. (2008). The Effects of Probiotics on Feeding Tolerance, Bowel Habits, and Gastrointestinal Motility in Preterm Newborns. The Journal of Pediatrics, 152(6), 801-806. doi:10.1016/j.jpeds.2007.11.005Jones, J. L., Fernandez, M. L., McIntosh, M. S., Najm, W., Calle, M. C., Kalynych, C., … Lerman, R. H. (2011). A Mediterranean-style low-glycemic-load diet improves variables of metabolic syndrome in women, and addition of a phytochemical-rich medical food enhances benefits on lipoprotein metabolism. Journal of Clinical Lipidology, 5(3), 188-196. doi:10.1016/j.jacl.2011.03.002Kamil, A., & Chen, C.-Y. O. (2012). Health Benefits of Almonds beyond Cholesterol Reduction. Journal of Agricultural and Food Chemistry, 60(27), 6694-6702. doi:10.1021/jf2044795Kolida, S., Tuohy, K., & Gibson, G. R. (2002). Prebiotic effects of inulin and oligofructose. British Journal of Nutrition, 87(S2), S193-S197. doi:10.1079/bjn/2002537Kopp-Hoolihan, L. (2001). Prophylactic and Therapeutic Uses of Probiotics. Journal of the American Dietetic Association, 101(2), 229-241. doi:10.1016/s0002-8223(01)00060-8Kroh, L. W. (1994). Caramelisation in food and beverages. Food Chemistry, 51(4), 373-379. doi:10.1016/0308-8146(94)90188-0Li, T. Y., Brennan, A. M., Wedick, N. M., Mantzoros, C., Rifai, N., & Hu, F. B. (2009). Regular Consumption of Nuts Is Associated with a Lower Risk of Cardiovascular Disease in Women with Type 2 Diabetes. The Journal of Nutrition, 139(7), 1333-1338. doi:10.3945/jn.108.103622Liu, R. H. (2012). Health Benefits of Phytochemicals in Whole Foods. Nutritional Health, 293-310. doi:10.1007/978-1-61779-894-8_13Julian McClements, D. (2004). Food Emulsions. Contemporary Food Science. doi:10.1201/9781420039436Matissek R, Schnepel FM, Steiner G (1998) Análisis de los Alimentos: Fundamentos, Métodos y Aplicaciones, Zaragoza: Acribia S.A. publishings, pp. 123–132.Ortiz, M. E., Fornaguera, M. J., Raya, R. R., & Mozzi, F. (2012). Lactobacillus reuteri CRL 1101 highly produces mannitol from sugarcane molasses as carbon source. Applied Microbiology and Biotechnology, 95(4), 991-999. doi:10.1007/s00253-012-3945-zPatrignani, F., Iucci, L., Lanciotti, R., Vallicelli, M., Maina Mathara, J., Holzapfel, W. H., & Guerzoni, M. E. (2007). Effect of High-Pressure Homogenization, Nonfat Milk Solids, and Milkfat on the Technological Performance of a Functional Strain for the Production of Probiotic Fermented Milks. Journal of Dairy Science, 90(10), 4513-4523. doi:10.3168/jds.2007-0373Pereda, J., Ferragut, V., Quevedo, J. M., Guamis, B., & Trujillo, A. J. (2007). Effects of Ultra-High Pressure Homogenization on Microbial and Physicochemical Shelf Life of Milk. Journal of Dairy Science, 90(3), 1081-1093. doi:10.3168/jds.s0022-0302(07)71595-3Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1-11. doi:10.1016/j.fm.2008.06.008Roberfroid, M. B. (2005). Introducing inulin-type fructans. British Journal of Nutrition, 93(S1), S13-S25. doi:10.1079/bjn20041350Roland, I. (2003). Systematic characterization of oil-in-water emulsions for formulation design. International Journal of Pharmaceutics, 263(1-2), 85-94. doi:10.1016/s0378-5173(03)00364-8Rajasekaran, A., & Kalaivani, M. (2012). Designer foods and their benefits: A review. Journal of Food Science and Technology, 50(1), 1-16. doi:10.1007/s13197-012-0726-8Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71(4), 394-406. doi:10.1007/s00253-006-0427-1Savino, F., Pelle, E., Palumeri, E., Oggero, R., & Miniero, R. (2007). Lactobacillus reuteri (American Type Culture Collection Strain 55730) Versus Simethicone in the Treatment of Infantile Colic: A Prospective Randomized Study. PEDIATRICS, 119(1), e124-e130. doi:10.1542/peds.2006-1222Sze, A., Erickson, D., Ren, L., & Li, D. (2003). Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. Journal of Colloid and Interface Science, 261(2), 402-410. doi:10.1016/s0021-9797(03)00142-5Tamime AY, Robinson RK (2000) Yoghurt. Science and Technology, Boca Raton: CRC Press, pp. 535–588.Vasiljevic, T., Kealy, T., & Mishra, V. K. (2007). Effects of ?-Glucan Addition to a Probiotic Containing Yogurt. Journal of Food Science, 72(7), C405-C411. doi:10.1111/j.1750-3841.2007.00454.xWilson, S., Blaschek, K., & Mejia, E. G. (2005). Allergenic Proteins in Soybean: Processing and Reduction of P34 Allergenicity. Nutrition Reviews, 63(2), 47-58. doi:10.1111/j.1753-4887.2005.tb00121.xWisselink, H. ., Weusthuis, R. ., Eggink, G., Hugenholtz, J., & Grobben, G. . (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12(2-3), 151-161. doi:10.1016/s0958-6946(01)00153-4Yaakob, H., Ahmed, N. R., Daud, S. K., Malek, R. A., & Rahman, R. A. (2012). Optimization of ingredient and processing levels for the production of coconut yogurt using response surface methodology. Food Science and Biotechnology, 21(4), 933-940. doi:10.1007/s10068-012-0123-0Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24(4-5), 469-480. doi:10.1016/j.jfca.2011.01.00

    First report of cytogenetic studies in Spanish breed horses

    Get PDF
    Exterior, Neptune Fountain, detai

    A role for the outer retina in development of the intrinsic pupillary light reflex in mice.

    Get PDF
    Mice do not require the brain in order to maintain constricted pupils. However, little is known about this intrinsic pupillary light reflex (iPLR) beyond a requirement for melanopsin in the iris and an intact retinal ciliary marginal zone (CMZ). Here, we study the mouse iPLR in vitro and examine a potential role for outer retina (rods and cones) in this response. In wild-type mice the iPLR was absent at postnatal day 17 (P17), developing progressively from P21-P49. However, the iPLR only achieved ∼ 30% of the wild-type constriction in adult mice with severe outer retinal degeneration (rd and rdcl). Paradoxically, the iPLR increased significantly in retinal degenerate mice >1.5 years of age. This was accompanied by an increase in baseline pupil tone in the dark to levels indistinguishable from those in adult wild types. This rejuvenated iPLR response was slowed by atropine application, suggesting the involvement of cholinergic neurotransmission. We could find no evidence of an increase in melanopsin expression by quantitative PCR in the iris and ciliary body of aged retinal degenerates and a detailed anatomical analysis revealed a significant decline in melanopsin-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in rdcl mice >1.5 years. Adult mice lacking rod function (Gnat1(-/-)) also had a weak iPLR, while mice lacking functional cones (Cpfl5) maintained a robust response. We also identify an important role for pigmentation in the development of the mouse iPLR, with only a weak and transient response present in albino animals. Our results show that the iPLR in mice develops unexpectedly late and are consistent with a role for rods and pigmentation in the development of this response in mice. The enhancement of the iPLR in aged degenerate mice was extremely surprising but may have relevance to behavioral observations in mice and patients with retinitis pigmentosa

    Risk factors for exacerbations and pneumonia in patients with chronic obstructive pulmonary disease: a pooled analysis.

    Get PDF
    BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) are at risk of exacerbations and pneumonia; how the risk factors interact is unclear. METHODS: This post-hoc, pooled analysis included studies of COPD patients treated with inhaled corticosteroid (ICS)/long-acting β2 agonist (LABA) combinations and comparator arms of ICS, LABA, and/or placebo. Backward elimination via Cox's proportional hazards regression modelling evaluated which combination of risk factors best predicts time to first (a) pneumonia, and (b) moderate/severe COPD exacerbation. RESULTS: Five studies contributed: NCT01009463, NCT01017952, NCT00144911, NCT00115492, and NCT00268216. Low body mass index (BMI), exacerbation history, worsening lung function (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage), and ICS treatment were identified as factors increasing pneumonia risk. BMI was the only pneumonia risk factor influenced by ICS treatment, with ICS further increasing risk for those with BMI <25 kg/m2. The modelled probability of pneumonia varied between 3 and 12% during the first year. Higher exacerbation risk was associated with a history of exacerbations, poorer lung function (GOLD stage), female sex and absence of ICS treatment. The influence of the other exacerbation risk factors was not modified by ICS treatment. Modelled probabilities of an exacerbation varied between 31 and 82% during the first year. CONCLUSIONS: The probability of an exacerbation was considerably higher than for pneumonia. ICS reduced exacerbations but did not influence the effect of risks associated with prior exacerbation history, GOLD stage, or female sex. The only identified risk factor for ICS-induced pneumonia was BMI <25 kg/m2. Analyses of this type may help the development of COPD risk equations

    A New Chanidae (Ostariophysii: Gonorynchiformes) from the Cretaceous of Brazil with Affinities to Laurasian Gonorynchiforms from Spain

    Get PDF
    Based on specimens originally referred to as “Dastilbe minor”, a nomem-nudum, we describe a new genus of Chanidae †Nanaichthys longipinnus nov. gen. and sp. which exhibits several diagnostic characters such as the absence of orbitosphenoid and basisphenoid, anteriorly displaced quadrate-mandibular articulation, laterally expanded supraneurals, an acute angle between the preopercular limbs, expansion at the angle between the preopercular limbs, and a curved maxillary articular process. Its occurrence and supposed relationship within the Chanidae reinforce the influence of the Mediterranean Tethys over the Gondwanan main rift system prior to the Aptian/Albian highstands

    How should performance in EBUS mediastinal staging in lung cancer be measured?

    Get PDF
    There has been a paradigm shift in mediastinal staging algorithms in non-small cell lung cancer over the last decade in the United Kingdom (UK). This has seen endoscopic nodal staging (predominantly endobronchial ultrasound, EBUS) almost replace surgical staging (predominantly mediastinoscopy) as the pathological staging procedure of first choic
    corecore