16 research outputs found

    Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions

    Get PDF
    Aedes polynesiensis is the primary mosquito vector of lymphatic filariasis (LF) in the island nations of the South Pacific. Control of LF in this region of the world is difficult due to the unique biology of the mosquito vector. A proposed method to control LF in the Pacific is through the release of male mosquitoes that are effectively sterile. In order for this approach to be successful, it is critical that the modified male mosquitoes be able to compete with wild type male mosquitoes for female mates. In this study the authors examined the mating competitiveness of modified males under semi-field conditions. Modified males were released into field cages holding field-collected, virgin females and field collected wild type males. The resulting proportion of eggs that hatched was inversely related to the number of modified males released into the cage, which is consistent with the hypothesized competitiveness of modified males against indigenous males. The outcome indicates that mass release of modified A. polynesiensis mosquitoes could result in the suppression of A. polynesiensis populations and supports the continued development of applied strategies for suppression of this important disease vector

    Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy

    Get PDF
    Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.</p

    Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2006, severe outbreaks of <it>Aedes aegypti</it>-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (<it>Poecilia reticulata</it>) and mosquitofish (<it>Gambusia affinis</it>), in indoor cement tanks for <it>Aedes </it>larval control.</p> <p>Methods</p> <p>Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for <it>Poecilia </it>and one village (Balmanda) in Kolar District from July to October 2006 for <it>Gambusia</it>. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + <it>Poecilia</it>) and Balmanda (IEC + <it>Gambusia</it>). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on <it>Aedes </it>larvae and disease was assessed based on baseline and post-intervention observations.</p> <p>Results</p> <p>Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (<it>n </it>= 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; <it>p </it>= 0.067). Indoor cement tanks were the most preferred <it>Ae. aegypti </it>breeding habitat (86.9%), and had a significant impact on <it>Aedes </it>breeding (Breteau Index) in all villages in the one-week period (<it>p </it>< 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, <it>p </it>< 0.001) then Srinivaspura (OR 0.45, <it>p </it>= 0.063) and Balmanda (OR 0.51, <it>p </it>= 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda.</p> <p>Conclusions</p> <p><it>Poecilia </it>exhibited greater survival rates than <it>Gambusia </it>(86.04 <it>vs</it>.16.03%) in cement tanks. Neither IEC nor <it>Poecilia </it>alone was effective against <it>Aedes </it>(<it>p </it>> 0.05). We conclude that <it>Poecilia </it>+ IEC is an effective intervention strategy. The operational cost was 0.50 (US0.011,1US 0.011, 1 US= 47) per capita per application. Proper water storage practices, focused IEC with <it>Poecilia </it>introductions and vector sanitation involving the local administration and community, is suggested as the best strategy for <it>Aedes </it>control.</p

    Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria

    Get PDF
    Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29Ā°C, with minimum and maximum temperatures of 12Ā°C and 38Ā°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26Ā°C, with a minimum and maximum of 17Ā°C and 35Ā°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p

    Hidden Sylvatic Foci of the Main Vector of Chagas Disease Triatoma infestans: Threats to the Vector Elimination Campaign?

    Get PDF
    Triatoma infestans, a highly domesticated species and historically the main vector of Trypanosoma cruzi, is the target of an insecticide-based elimination program in the southern cone countries of South America since 1991. Only limited success has been achieved in the Gran Chaco region due to repeated reinfestations. We conducted full-coverage spraying of pyrethroid insecticides of all houses in a well-defined rural area in northwestern Argentina, followed by intense monitoring of house reinfestation and searches for triatomine bugs in sylvatic habitats during the next two years, to establish the putative sources of new bug colonies. We found low-density sylvatic foci of T. infestans in trees located within the species' flight range from the nearest infested house detected before control interventions. Using multiple methods (fine-resolution satellite imagery, geographic information systems, spatial statistics, genetic markers and wing geometric morphometry), we corroborated the species identity of the sylvatic bugs as T. infestans and found they were indistinguishable from or closely related to local domestic or peridomestic bug populations. Two sylvatic foci were spatially associated to the nearest peridomestic bug populations found before interventions. Sylvatic habitats harbor hidden foci of T. infestans that may represent a threat to vector suppression attempts

    The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. <it>Anopheles sinensis </it>plays a major role in the maintenance of <it>Plasmodium vivax </it>malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and <it>An. sinensis </it>in Yongcheng city, a representative region of <it>P. vivax </it>malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and <it>An. sinensis</it>.</p> <p>Results</p> <p><it>Culex tritaeniorhynchus </it>was the most prevalent mosquito species and <it>An. sinensis </it>was the sole potential vector of <it>P. vivax </it>malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus</it>. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female <it>An. sinensis </it>was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female <it>An. sinensis </it>while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female <it>An. sinensis </it>and the average relative humidity (P < 0.05) in Wangshanzhuang village.</p> <p>Conclusions</p> <p>Pigs, goats and calves were more attractive to <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>than dogs, humans, and chickens. Female <it>An. sinensis </it>host-seeking activity mainly occurred from 19:00 to 21:00. Thus, we propose that future vector control against <it>An. sinensis </it>and <it>Cx. tritaeniorhynchus </it>in the areas along the Huang-Huai River of central China should target the interface of human activity with domestic animals and adopt before human hosts go to bed at night.</p
    corecore