5,109 research outputs found

    The effect of cigarette price increase on the cigarette consumption in Taiwan: evidence from the National Health Interview Surveys on cigarette consumption

    Get PDF
    BACKGROUND: This study uses cigarette price elasticity to evaluate the effect of a new excise tax increase on cigarette consumption and to investigate responses from various types of smokers. METHODS: Our sample consisted of current smokers between 17 and 69 years old interviewed during an annual face-to-face survey conducted by Taiwan National Health Research Institutes between 2000 to 2003. We used Ordinary Least Squares (OLS) procedure to estimate double logarithmic function of cigarette demand and cigarette price elasticity. RESULTS: In 2002, after Taiwan had enacted the new tax scheme, cigarette price elasticity in Taiwan was found to be -0.5274. The new tax scheme brought about an average annual 13.27 packs/person (10.5%) reduction in cigarette consumption. Using the cigarette price elasticity estimate from -0.309 in 2003, we calculated that if the Health and Welfare Tax were increased by another NT$ 3 per pack and cigarette producers shifted this increase to the consumers, cigarette consumption would be reduced by 2.47 packs/person (2.2%). The value of the estimated cigarette price elasticity is smaller than one, meaning that the tax will not only reduce cigarette consumption but it will also generate additional tax revenues. Male smokers who had no income or who smoked light cigarettes were found to be more responsive to changes in cigarette price. CONCLUSIONS: An additional tax added to the cost of cigarettes would bring about a reduction in cigarette consumption and increased tax revenues. It would also help reduce incidents smoking-related illnesses. The additional tax revenues generated by the tax increase could be used to offset the current financial deficiency of Taiwan's National Health Insurance program and provide better public services

    Bending behavior of woven fabrics

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Controlling False Positive/Negative Rates for Deep-Learning-Based Prostate Cancer Detection on Multiparametric MR images

    Get PDF
    Prostate cancer (PCa) is one of the leading causes of death for men worldwide. Multi-parametric magnetic resonance (mpMR) imaging has emerged as a non-invasive diagnostic tool for detecting and localising prostate tumours by specialised radiologists. These radiological examinations, for example, for differentiating malignant lesions from benign prostatic hyperplasia in transition zones and for defining the boundaries of clinically significant cancer, remain challenging and highly skill-and-experience-dependent. We first investigate experimental results in developing object detection neural networks that are trained to predict the radiological assessment, using these high-variance labels. We further argue that such a computer-assisted diagnosis (CAD) system needs to have the ability to control the false-positive rate (FPR) or false-negative rate (FNR), in order to be usefully deployed in a clinical workflow, informing clinical decisions without further human intervention. However, training detection networks typically requires a multi-tasking loss, which is not trivial to be adapted for a direct control of FPR/FNR. This work in turn proposes a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function, to manage the lesion- and slice-level costs, respectively. Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost; 2) The slice-level FNR was reduced from 0.19 to 0.00 by taking into account the slice-level cost; (3) Both lesion-level and slice-level FNRs were reduced with lower FP/FPR by changing the lesion-level or slice-level costs, compared with post-training threshold adjustment using networks without the proposed cost-aware training. For the PCa application of interest, the proposed CAD system is capable of substantially reducing FNR with a relatively preserved FPR, therefore is considered suitable for PCa screening applications

    Towards direct laser writing of actively tuneable three-dimensional photonic crystals

    Get PDF
    3D printing and actively switchable redox‐active oligo(aniline)‐based materials are combined to create novel tuneable 3D photonic materials. By a direct laser writing process, switchable functional structures with submicrometer features are fabricated. Reversible changes in the refractive index of the written materials are generated with negligible size changes

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    Multicenter data acquisition made easy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process for data collection in multicenter trials may be troublesome and expensive. We report our experience with the spreadsheet function in Googledocs for this purpose.</p> <p>Methods</p> <p>In Googledocs the data manager creates a form similar to the paper case record form, which will function as a decentral data entry module. When the forms are submitted, they are presented in a spreadsheet in Googledocs, which can be exported to different standard spreadsheet formats.</p> <p>Results</p> <p>For a multicenter randomized clinical trial with five different participating hospitals we created a decentral data entry module using the spreadsheet function in Googledocs. The study comprised 332 patients (clinicaltrials.gov identifier: NCT00815698) with five visits per patient. One person at each study site entered data from the original paper based case report forms which were kept at the study sites as originals. We did not experience any technical problems using the system.</p> <p>Conclusions</p> <p>The system allowed for decentral data entry, and it was easy to use, safe, and free of charge. The spreadsheet function in Googledocs may potentially replace current expensive solutions for data acquisition in multicenter trials.</p> <p>Trial registration</p> <p>clinicaltrials.gov NCT00815698</p

    Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake

    Full text link
    Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate-and-state dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the micro-seismicity (M>0.5) correlates well with the static stress perturbations, indicating destabilization.Comment: 22 pages, 4 figures, 3 table

    An electrochemical system for efficiently harvesting low-grade heat energy

    Get PDF
    Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the dependence of electrode potential on temperature, can construct such cycles. In one cycle, an electrochemical cell is charged at a temperature and then discharged at a different temperature with higher cell voltage, thereby converting heat to electricity. Here we report an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The electrode materials have low polarization, high charge capacity, moderate temperature coefficients and low specific heat. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7% when cycled between 10 and 60 degrees C, opening a promising way to utilize low-grade heat.open121

    User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner

    Get PDF
    Background: The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital. Methods: AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital. Results: Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution. Conclusions: AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department

    The role of Endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) for qualitative diagnosis of mediastinal and hilar lymphadenopathy: a prospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently EBUS-TBNA, which has a sensitivity of 94.6%, specificity of 100% and diagnostic accuracy rate of 96.3% as previously reported, has been widely used for patients with mediastinal and hilar lymphadenopathy or suspected lung cancer to get accurate diagnosis. The purpose of the current study was to evaluate the usefulness of EBUS-TBNA in obtaining cytological and histological diagnosis of mediastinal and hilar lymph nodes compared to the results obtained with conventional mediastinoscopy as previously reported, and to assess the relationship of diagnostic accuracy and number of passes and size of lymph nodes.</p> <p>Methods</p> <p>101 patients with mediastinal and hilar lymphadenopathy or suspected lung cancer in our institution were included in this prospective study. EBUS-TBNA was performed in all cases. The final diagnosis was confirmed by cytology, surgical results, and/or clinical follow-up for at least 6 months. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated using standard formulas.</p> <p>Results</p> <p>In 101 patients, EBUS-TBNA was successfully performed to obtain samples from 225 lymph nodes, 7 lung masses, 1 mediastinal mass and 2 esophageal masses. 63 malignant tumors and 38 benign diseases were confirmed. Epidermal growth factor receptor mutation was detected in 10 biopsy samples, and epidermal growth factor receptor mutation was detected in 4 cases. With respect to the correct diagnosis of mediastinal and hilar lymphadenopathy, EBUS-TBNA had a sensitivity of 95.08%, specificity of 100%, positive predictive value of 100%, negative predictive value of 93.02%, and overall accuracy of 97.02%. The relationship of diagnostic accuracy and number of lymph node passes or size of lymph nodes was both insignificant (p = 0.27; p = 0.23). The procedure was uneventful without complications.</p> <p>Conclusions</p> <p>EBUS-TBNA is an accurate and safe tool in diagnosis of mediastinal and hilar lymphadenopathy. It cannot completely replace mediastinoscopy, it may indeed reduce the number of mediastinoscopy procedures. In some cases, it can necessarily be the first-line procedure before mediastinoscopy.</p
    • 

    corecore