41 research outputs found

    Survival of massive allografts in segmental oncological bone defect reconstructions

    Get PDF
    Reconstructions of large segmental bone defects after resection of bone tumours with massive structural allografts have a high number of reported complications including fracture, infection and non-union. Our goal is to report the survival and complications of massive allografts in our patients. A total of 32 patients were evaluated for fracture, infection, non-union rate and survival of their massive allograft reconstructions. The average follow-up for this group was five years and three months. The total fracture rate was 13% with a total infection rate of 16%. We found a low union rate of 25%. The total survival of the allografts was 80.8% (± 18.7%) after five years. We found a five-year allograft survival of 80.8% which is comparable with other studies

    Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 ÎĽm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p

    Le ricostruzioni di femore distale con megaprotesi modulari: sopravvivenza degli impianti e complicazioni in uno studio multicentrico di 951 casi

    No full text
    Le ricostruzioni di femore distale con megaprotesi modulari: sopravvivenza degli impianti e complicazioni in uno studio multicentrico di 951 cas

    Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    No full text
    Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People&rsquo;s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI,&nbsp;USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs) identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS) successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran-based polymeric nanoparticle platform may be an effective nonviral carrier for potential miR-based anticancer therapeutics. Keywords: bone tumor, dextran nanoparticles, miR-199a-3p, let-7a, RNA

    Failure mode of segmental endoprostheses for tumour surgery: retrospective review of five Institutions

    No full text
    none10Failure mode of segmental endoprostheses for tumour surgery: retrospective review of five InstitutionsnoneHENDERSON ER; GROUNDLAND JS; PALA E; WOOTEN R; FUNOVICS PT; HORNICEK FJ; TEMPLE HT; MERCURI M; RUGGIERI P; LETSON GDHenderson, Er; Groundland, Js; Pala, E; Wooten, R; Funovics, Pt; Hornicek, Fj; Temple, Ht; Mercuri, M; Ruggieri, Pietro; Letson, G
    corecore