17 research outputs found
Flexibility along the Neck of the Neogene Terror Bird Andalgalornis steulleti (Aves Phorusrhacidae)
BACKGROUND: Andalgalornis steulleti from the upper Miocene-lower Pliocene (≈6 million years ago) of Argentina is a medium-sized patagornithine phorusrhacid. It was a member of the predominantly South American radiation of 'terror birds' (Phorusrhacidae) that were apex predators throughout much of the Cenozoic. A previous biomechanical study suggests that the skull would be prepared to make sudden movements in the sagittal plane to subdue prey. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the flexion patterns of the neck of Andalgalornis based on the neck vertebrae morphology and biometrics. The transitional cervical vertebrae 5th and 9th clearly separate regions 1-2 and 2-3 respectively. Bifurcate neural spines are developed in the cervical vertebrae 7th to 12th suggesting the presence of a very intricate ligamentary system and of a very well developed epaxial musculature. The presence of the lig. elasticum interespinale is inferred. High neural spines of R3 suggest that this region concentrates the major stresses during downstrokes. CONCLUSIONS/SIGNIFICANCE: The musculoskeletal system of Andalgalornis seems to be prepared (1) to support a particularly big head during normal stance, and (2) to help the neck (and the head) rising after the maximum ventroflexion during a strike. The study herein is the first interpretation of the potential performance of the neck of Andalgalornis in its entirety and we considered this an important starting point to understand and reconstruct the flexion pattern of other phorusrhacids from which the neck is unknown
Evolution of body morphology and beak shape revealed by a morphometric analysis of 14 Paridae species
Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development
The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance
The Structure of the Mammalian Predator Guild in the Santa Cruz Formation (Late Early Miocene)
The Santa Cruz Formation (late early Miocene, Santacrucian age) registers 11 species of mammalian predators (Metatheria, Sparassodonta). Together with large carnivorous flightless birds, they comprised the terrestrial predator guild. The Santacrucian sparassodonts were diverse in body size, had different locomotory habits, and were primarily hypercarnivores. The objective of this work is to analyze the guild structure of the sparassodonts of the Santa Cruz Formation, using the variables of body mass, diet, and locomotion as proxies. Furthermore, we analyze the interaction with other predators and potential prey. The univariated test V of Poole and Rathcke and the multivariated test of Clark-Evans were used to construct the models. In the multivariate test, we made a Principal Component Analysis to resume and standardize the variables. With body mass and locomotion we obtained an evenly spaced pattern of segregation for the sparassodont species, being non-significant and significant, respectively. The pattern was aggregated and significant only with diet. The analysis of all variables together resulted in an evenly spaced and significant pattern, which is consistent with character displacements (segregation of species throughout the morphospace) that would help to diminish interspecific competition during the Santacrucian age and would allow selection of prey species of different sizes and substrate specializations. When the body size pattern of predator birds and sparassodonts were plotted together, the pattern is evenly spaced and nonsignificant. Other factors, including locomotion, would differentiate these species and their ecological niches.Fil: Ercoli, Marcos Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Prevosti, Francisco Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Forasiepi, Analia Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin
Morphology of the forelimb of Psilopterus bachmanni (Aves, Cariamiformes) (Early Miocene of Patagonia)
Analyzing Taphonomic Deformation of Ankylosaur Skulls Using Retrodeformation and Finite Element Analysis
Taphonomic deformation can make the interpretation of vertebrate fossil morphology difficult. The effects of taphonomic deformation are investigated in two ankylosaurid dinosaur taxa, Euoplocephalus tutus (to investigate effects on our understanding of intraspecific variation) and Minotaurasaurus ramachandrani (to investigate the validity of this genus). The ratio of orbit maximum rostrocaudal length to perpendicular height is used as a strain ellipse, which can be used to determine if ankylosaur skull fossils have been dorsoventrally compacted during fossilization and diagenesis. The software program Geomagic is used to retrodeform three-dimensional (3D) digital models of the ankylosaur skulls. The effects of sediment compaction are modeled using finite element analysis, and the resulting strain distributions are compared with the retrodeformed models as a test of the retrodeformation method. Taphonomic deformation can account for a large amount of intraspecific variation in Euoplocephalus, but finite element analysis and retrodeformation of Minotaurasaurus shows that many of its diagnostic features are unlikely to result from deformation
