53 research outputs found

    Upstream kinases of plant SnRKs are involved in salt stress tolerance

    Get PDF
    Sucrose-Non-Fermenting1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2, and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family and that they play important roles in multiple signalling pathways in vivo. This article is protected by copyright. All rights reserved

    Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis

    Get PDF
    Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio

    Identification and Functional Characterization of Zebrafish Solute Carrier Slc16a2 (Mct8) as a Thyroid Hormone Membrane Transporter

    No full text
    Most components of the thyroid system in bony fish have been described and characterized, with the notable exception of thyroid hormone membrane transporters. We have cloned, sequenced, and expressed the zebrafish solute carrier Slc16a2 (also named monocarboxylate transporter Mct8) cDNA and established its role as a thyroid hormone transport protein. The cloned cDNA shares 56-57% homology with its mammalian orthologs. The 526-amino-acid sequence contains 12 predicted transmembrane domains. An intracellular N-terminal PEST domain, thought to be involved in proteolytic processing of the protein, is present in the zebrafish sequence. Measured at initial rate and at the body/ rearing temperature of zebrafish (26 C), T(3) uptake by zebrafish Slc16a2 is a saturable process with a calculated Michaelis-Menten constant of 0.8 mu M T(3). The rate of T3 uptake is temperature dependent and Na(+) independent. Interestingly, at 26 C, zebrafish Slc16a2 does not transport T(4). This implies that at a normal body temperature in zebrafish, Slc16a2 protein is predominantly involved in T(3) uptake. When measured at 37 C, zebrafish Slc16a2 transports T(4) in a Na(+)-independent manner. In adult zebrafish, the Slc16a2 gene is highly expressed in brain, gills, pancreas, liver, pituitary, heart, kidney, and gut. Beginning from the midblastula stage, Slc16a2 is also expressed during zebrafish early development, the highest expression levels occurring 48 h after fertilization. This is the first direct evidence for thyroid hormone membrane transporters in fish. We suggest that Slc16a2 plays a key role in the local availability of T(3) in adult tissues as well as during the completion of morphogenesis of primary organ systems. (Endocrinology 152: 5065-5073, 2011

    Identification of SLC41A3 as a novel player in magnesium homeostasis.

    No full text
    Regulation of the body Mg(2+) balance takes place in the distal convoluted tubule (DCT), where transcellular reabsorption determines the final urinary Mg(2+) excretion. The basolateral Mg(2+) extrusion mechanism in the DCT is still unknown, but recent findings suggest that SLC41 proteins contribute to Mg(2+) extrusion. The aim of this study was, therefore, to characterize the functional role of SLC41A3 in Mg(2+) homeostasis using the Slc41a3 knockout (Slc41a3(-/-)) mouse. By quantitative PCR analysis it was shown that Slc41a3 is the only SLC41 isoform with enriched expression in the DCT. Interestingly, serum and urine electrolyte determinations demonstrated that Slc41a3(-/-) mice suffer from hypomagnesemia. The intestinal Mg(2+) absorption capacity was measured using the stable (25)Mg(2+) isotope in mice fed a low Mg(2+) diet. (25)Mg(2+) uptake was similar in wildtype (Slc41a3(+/+)) and Slc41a3(-/-) mice, although Slc41a3(-/-) animals exhibited increased intestinal mRNA expression of Mg(2+) transporters Trpm6 and Slc41a1. Remarkably, some of the Slc41a3(-/-) mice developed severe unilateral hydronephrosis. In conclusion, SLC41A3 was established as a new factor for Mg(2+) handling

    Identification of SLC41A3 as a novel player in magnesium homeostasis.

    Get PDF
    Regulation of the body Mg(2+) balance takes place in the distal convoluted tubule (DCT), where transcellular reabsorption determines the final urinary Mg(2+) excretion. The basolateral Mg(2+) extrusion mechanism in the DCT is still unknown, but recent findings suggest that SLC41 proteins contribute to Mg(2+) extrusion. The aim of this study was, therefore, to characterize the functional role of SLC41A3 in Mg(2+) homeostasis using the Slc41a3 knockout (Slc41a3(-/-)) mouse. By quantitative PCR analysis it was shown that Slc41a3 is the only SLC41 isoform with enriched expression in the DCT. Interestingly, serum and urine electrolyte determinations demonstrated that Slc41a3(-/-) mice suffer from hypomagnesemia. The intestinal Mg(2+) absorption capacity was measured using the stable (25)Mg(2+) isotope in mice fed a low Mg(2+) diet. (25)Mg(2+) uptake was similar in wildtype (Slc41a3(+/+)) and Slc41a3(-/-) mice, although Slc41a3(-/-) animals exhibited increased intestinal mRNA expression of Mg(2+) transporters Trpm6 and Slc41a1. Remarkably, some of the Slc41a3(-/-) mice developed severe unilateral hydronephrosis. In conclusion, SLC41A3 was established as a new factor for Mg(2+) handling
    corecore