39,245 research outputs found
The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations
The velocity dispersion of galaxies on small scales ( Mpc),
, can be estimated from the anisotropy of the galaxy-galaxy
correlation function in redshift space. We apply this technique to
``mock-catalogs'' extracted from N-body simulations of several different
variants of Cold Dark Matter dominated cosmological models to obtain results
which may be consistently compared to similar results from observations. We
find a large variation in the value of in different
regions of the same simulation. We conclude that this statistic should not be
considered to conclusively rule out any of the cosmological models we have
studied. We attempt to make the statistic more robust by removing clusters from
the simulations using an automated cluster-removing routine, but this appears
to reduce the discriminatory power of the statistic. However, studying
as clusters with different internal velocity dispersions are
removed leads to interesting information about the amount of power on cluster
and subcluster scales. We also compute the pairwise velocity dispersion
directly and compare this to the values obtained using the Davis-Peebles
method, and find that the agreement is fairly good. We evaluate the models used
for the mean streaming velocity and the pairwise peculiar velocity distribution
in the original Davis-Peebles method by comparing the models with the results
from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS
macro
A flight evaluation of a trailing anemometer for low-speed calibrations of airspeed systems on research aircraft
Research airspeed systems on three low-speed general aviation airplanes were calibrated by the trailing anemometer method. Each airplane was fitted with an NASA pitot-static pressure tube mounted on either a nose or wing boom. The uncalibrated airspeed systems contained residual static-pressure position errors which were too large for high-accuracy flight research applications. The trailing anemometer calibration was in agreement with the tower flyby calibration for the one aircraft for which the comparison was made. The continuous deceleration technique for the trailing anemometer method offers reduced test time with no appreciable loss of accuracy for airspeed systems with pitot-static system lag characteristics similar to those described
Impulse distributions in dense granular flows: signatures of large-scale spatial structures
In this paper we report the results of simulations of a 2D gravity driven,
dissipative granular flow through a hopper system. Measurements of impulse
distributions P(I) on the simulated system show flow-velocity-invariant
behavior of the distribution for impulses larger than the average impulse .
For small impulses, however, P(I) decreases significantly with flow velocity, a
phenomenon which can be attributed exclusively to collisions between grains
undergoing frequent collisions. Visualizations of the system also show that
these frequently colliding particles tend to form increasingly large linear
clusters as the flow velocity decreases. A model is proposed for the form of
P(I), given distributions of cluster size and velocity, which accurately
predicts the observed form of the distribution. Thus the impulse distribution
provides some insight into the formation and properties of these ``dynamic''
force chains.Comment: 4 pages, 4 figure
Scaling for Interfacial Tensions near Critical Endpoints
Parametric scaling representations are obtained and studied for the
asymptotic behavior of interfacial tensions in the \textit{full} neighborhood
of a fluid (or Ising-type) critical endpoint, i.e., as a function \textit{both}
of temperature \textit{and} of density/order parameter \textit{or} chemical
potential/ordering field. Accurate \textit{nonclassical critical exponents} and
reliable estimates for the \textit{universal amplitude ratios} are included
naturally on the basis of the ``extended de Gennes-Fisher'' local-functional
theory. Serious defects in previous scaling treatments are rectified and
complete wetting behavior is represented; however, quantitatively small, but
unphysical residual nonanalyticities on the wetting side of the critical
isotherm are smoothed out ``manually.'' Comparisons with the limited available
observations are presented elsewhere but the theory invites new, searching
experiments and simulations, e.g., for the vapor-liquid interfacial tension on
the two sides of the critical endpoint isotherm for which an amplitude ratio
is predicted.Comment: 42 pages, 6 figures, to appear in Physical Review
Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types
We study the distortions induced by peculiar velocities on the redshift-space
correlation function of galaxies of different morphological types in the
Pisces-Perseus redshift survey. Redshift-space distortions affect early- and
late-type galaxies in different ways. In particular, at small separations, the
dominant effect comes from virialized cluster cores, where ellipticals are the
dominant population. The net result is that a meaningful comparison of the
clustering strength of different morphological types can be performed only in
real space, i.e., after projecting out the redshift distortions on the
two-point correlation function xi(r_p,pi). A power-law fit to the projected
function w_p(r_p) on scales smaller than 10/h Mpc gives r_o =
8.35_{-0.76}^{+0.75} /h Mpc, \gamma = 2.05_{-0.08}^{+0.10} for the early-type
population, and r_o = 5.55_{-0.45}^{+0.40} /h Mpc, \gamma =
1.73_{-0.08}^{+0.07} for spirals and irregulars. These values are derived for a
sample luminosity brighter than M_{Zw} = -19.5. We detect a 25% increase of r_o
with luminosity for all types combined, from M_{Zw} = -19 to -20. In the
framework of a simple stable-clustering model for the mean streaming of pairs,
we estimate sigma_12(1), the one-dimensional pairwise velocity dispersion
between 0 and 1 /h Mpc, to be 865^{+250}_{-165} km/s for early-type galaxies
and 345^{+95}_{-65} km/s for late types. This latter value should be a fair
estimate of the pairwise dispersion for ``field'' galaxies; it is stable with
respect to the presence or absence of clusters in the sample, and is consistent
with the values found for non-cluster galaxies and IRAS galaxies at similar
separations.Comment: 17 LaTeX pages including 3 tables, plus 11 PS figures. Uses AASTeX
macro package (aaspp4.sty) and epsf.sty. To appear on ApJ, 489, Nov 199
Entanglement in general two-mode continuous-variable states: local approach and mapping to a two-qubit system
We present a new approach to the analysis of entanglement in smooth bipartite
continuous-variable states. One or both parties perform projective filterings
via preliminary measurements to determine whether the system is located in some
region of space; we study the entanglement remaining after filtering. For small
regions, a two-mode system can be approximated by a pair of qubits and its
entanglement fully characterized, even for mixed states. Our approach may be
extended to any smooth bipartite pure state or two-mode mixed state, leading to
natural definitions of concurrence and negativity densities. For Gaussian
states both these quantities are constant throughout configuration space.Comment: 4 pages, RevTeX 4, one figure. Further modifications in response to
journal referees, correction to expression for negativit
Flight investigation of the VFR and IFR landing approach characteristics and terminal area airspace requirements for a light STOL airplane
A flight research program was conducted to determine the terminal area instrument flight capabilities of a light STOL airplane. Simulated (hooded) instrument landing approaches were made using steep single-segment and two-segment glide slopes. A brief investigation was also made of the visual flight terminal area capabilities of the aircraft. The results indicated that the airplane could be flown on a 7 deg glide-slope ILS-type approach in still air with an adequate 3 deg margin for downward correction
- …