8,227 research outputs found
Two-stage individual participant data meta-analysis and generalized forest plots
This article describes a command, ipdmetan, which facilitates twostage
individual participant data (ipd) meta-analysis of any measure of effect and
its standard error by fitting a specified model to the data from each study in
turn. Random-effects and heterogeneity statistics may be estimated, and additional
covariates and interactions included. If ipd is available for certain studies
and aggregate data for others, ipdmetan allows them to be combined in a single
analysis. Detailed, flexible forest plots may be produced, including outside the
context of formal meta-analysis
Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators
Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens
Divergence of photosynthetic strategies amongst marine diatoms.
Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 ÎĽmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes
Experimental Testing of Door Panel Boundary Conditions to Determine NVH Variability
The variability of measured frequency response functions (FRFs) from nominally identical structures is a
well-known phenomenon and trying to eradicate it increases the design challenge for automotive manufacturers.
In this paper a vehicle door is experimentally tested in order to assess the effect of variability in the
attachment boundary conditions between the door structure and trim components upon measured FRF data.
Plastic clips can be used to hold the trim to the door panel, so individual clips were systematically removed
and then replaced in order to generate a set of measured FRFs that demonstrate how individual property
changes can influence the global structure. Point and transfer FRFs, with corresponding normalised standard
deviations, were measured by exciting the door panel and measuring the response both on the door panel
and on the attached trim. The door response was found to vary by up to 10% over all clip combinations,
and this is compared to the test variability. A newly developed function that predicts the FRF variability
due to measurement test error was also applied. The results of this prediction match closely with the normalised
standard deviation calculated from repeat FRF measurements taken on the structure. This will
therefore enable test-to-test variability to be separated from structure-to-structure variabilit
A study of vehicle and measurement NVH variability
A range of nominally identical automotive vehicles have been tested for NVH variability by exciting the engine mount with an impact hammer and measuring the responses at different points on the vehicle. Normalised standard deviations were calculated from the mobility, which fell well within the boundaries of previous comparable measurements. The measurement variability was determined by taking repeat measurements on a single vehicle, which were found to be very repeatable, varying by up to 2.9%. A
function that uses the coherence to determine the random error was applied to the data to determine the variability due to the measurement taking process. This was compared with repeat measurements taken on a single vehicle and was shown to agree well with one another. A design of experiments has also been created that determines the effect of each variable such as the temperature and angle of impact on the overall vehicle to vehicle variability
Microelectrode array recordings from the ventral roots in chronically implanted cats
ventral spinal roots contain the axons of spinal motoneurons and provide the only location in the peripheral nervous system where recorded neural activity can be assured to be motor rather than sensory. This study demonstrates recordings of single unit activity from these ventral root axons using floating microelectrode arrays (FMAs). Ventral root recordings were characterized by examining single unit yield and signal-to-noise ratios (SNR) with 32-channel FMAs implanted chronically in the L6 and L7 spinal roots of nine cats. Single unit recordings were performed for implant periods of up to 12 weeks. Motor units were identified based on active discharge during locomotion and inactivity under anesthesia. Motor unit yield and SNR were calculated for each electrode, and results were grouped by electrode site size, which were varied systematically between 25 and 160μm to determine effects on signal quality. The unit yields and SNR did not differ significantly across this wide range of electrode sizes. Both SNR and yield decayed over time, but electrodes were able to record spikes with SNR >2 up to 12 weeks post-implant. These results demonstrate that it is feasible to record single unit activity from multiple isolated motor units with penetrating microelectrode arrays implanted chronically in the ventral spinal roots. This approach could be useful for creating a spinal nerve interface for advanced neural prostheses, and results of this study will be used to improve design of microelectrodes for chronic neural recording in the ventral spinal roots. © 2014 Debnath, Bauman, Fisher, Weber and Gaunt
Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach?
Identifying which individuals benefit most from particular treatments or other interventions underpins so-called personalised or stratified medicine. However, single trials are typically underpowered for exploring whether participant characteristics, such as age or disease severity, determine an individual’s response to treatment. A meta-analysis of multiple trials, particularly one where individual participant data (IPD) are available, provides greater power to investigate interactions between participant characteristics (covariates) and treatment effects. We use a published IPD meta-analysis to illustrate three broad approaches used for testing such interactions. Based on another systematic review of recently published IPD meta-analyses, we also show that all three approaches can be applied to aggregate data as well as IPD. We also summarise which methods of analysing and presenting interactions are in current use, and describe their advantages and disadvantages. We recommend that testing for interactions using within-trials information alone (the deft approach) becomes standard practice, alongside graphical presentation that directly visualises this
Duplicated network meta-analysis in advanced prostate cancer: a case study and recommendations for change
Background: Research overlap and duplication is a recognised problem in the context of both pairwise and network systematic reviews and meta-analyses. As a case study, we carried out a scoping review to identify and examine duplicated network meta-analyses (NMAs) in a specific disease setting where several novel therapies have recently emerged: hormone-sensitive metastatic prostate cancer (mHSPC). Methods: MEDLINE and EMBASE were systematically searched, in January 2020, for indirect or mixed treatment comparisons or network meta-analyses of the systemic treatments docetaxel and abiraterone acetate in the mHSPC setting, with a time-to-event outcome reported on the hazard-ratio scale. Eligibility decisions were made, and data extraction performed, by two independent reviewers. Results: A total of 13 eligible reviews were identified, analysing between 3 and 8 randomised comparisons, and comprising between 1773 and 7844 individual patients. Although the included trials and treatments showed a high degree of overlap, we observed considerable variation between identified reviews in terms of review aims, eligibility criteria and included data, statistical methodology, reporting and inference. Furthermore, crucial methodological details and specific source data were often unclear. Conclusions and recommendations: Variation across duplicated NMAs, together with reporting inadequacies, may compromise identification of best-performing treatments. Particularly in fast-moving fields, review authors should be aware of all relevant studies, and of other reviews with potential for overlap or duplication. We recommend that review protocols be published in advance, with greater clarity regarding the specific aims or scope of the project, and that reports include information on how the work builds upon existing knowledge. Source data and results should be clearly and completely presented to allow unbiased interpretation
Using false discovery rates to benchmark SNP-callers in next-generation sequencing projects
This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Sequence alignments form the basis for many comparative and population genomic studies. Alignment tools provide a range of accuracies dependent on the divergence between the sequences and the alignment methods. Despite widespread use, there is no standard method for assessing the accuracy of a dataset and alignment strategy after resequencing. We present a framework and tool for determining the overall accuracies of an input read dataset, alignment and SNP-calling method providing an isolate in that dataset has a corresponding, or closely related reference sequence available. In addition to this tool for comparing False Discovery Rates (FDR), we include a method for determining homozygous and heterozygous positions from an alignment using binomial probabilities for an expected error rate. We benchmark this method against other SNP callers using our FDR method with three fungal genomes, finding that it was able achieve a high level of accuracy. These tools are available at http://cfdr.sourceforge.net/.R.A.F. was funded by the Natural Environment Research Council (NERC). D.A.H. and M.C.F. were supported by the Wellcome Trust. No additional external funding received for this study
Toward High-Precision Measures of Large-Scale Structure
I review some results of estimation of the power spectrum of density
fluctuations from galaxy redshift surveys and discuss advances that may be
possible with the Sloan Digital Sky Survey. I then examine the realities of
power spectrum estimation in the presence of Galactic extinction, photometric
errors, galaxy evolution, clustering evolution, and uncertainty about the
background cosmology.Comment: 24 pages, including 11 postscript figures. Uses crckapb.sty (included
in submission). To appear in ``Ringberg Workshop on Large-Scale Structure,''
ed D. Hamilton (Kluwer, Amsterdam), p. 39
- …