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Two-stage individual participant data

meta-analysis and generalized forest plots

David J. Fisher
MRC Clinical Trials Unit at University College London

London, UK

d.fisher@ucl.ac.uk

Abstract. In this article, I describe a command, ipdmetan, that facilitates two-
stage individual participant data meta-analysis of any measure of effect and its
standard error by fitting a specified model to data from each study. The command
can estimate random effects and heterogeneity statistics and include additional
covariates and interactions. If individual participant data are available for certain
studies and aggregate data for others, ipdmetan allows them to be combined in one
analysis. This command can produce detailed and flexible forest plots, including
ones outside the context of formal meta-analysis.

Keywords: st0384, ipdmetan, forestplot, admetan, ipdover, meta-analysis, forest
plot, individual participant data, survival, two-stage, time-to-event, prefix com-
mand, subgroup

1 Introduction

Meta-analysis is a statistical technique for combining results from multiple independent
studies, usually to estimate one overall effect with increased precision (Deeks, Altman,
and Bradburn 2001). Stata has various tools for performing meta-analysis, many of
which are described in a previous collection of articles (Sterne 2009). These have fo-
cused on the pooling of study results in the form of aggregate (published summary)
data (AD)—traditionally the most common form of meta-analysis. However, individual
participant (or patient) data (IPD) are increasingly used and permit a greater range of
possible analyses while minimizing bias from heterogeneity of analysis protocols between
studies (for example, patient exclusions or the precise model used) and maximizing data
completeness and follow-up (Stewart and Tierney 2002).

Both “one-stage” and “two-stage” approaches exist for analyzing IPD; both are com-
monly used and are consistent estimators of the pooled effect. Although a one-stage esti-
mator is always at least as efficient as its equivalent two-stage estimator for linear models
where the full covariance matrix is directly observed (Mathew and Nordström 2010), it
remains unclear whether this holds for nonlinear outcomes (for example, time-to-event)
and situations where the covariate matrix is only an estimate. Moreover, it is unclear
whether such differences are great enough to be statistically or clinically relevant. For
instance, simulation studies (Tudur Smith and Williamson 2007; Bowden et al. 2011)
and case studies (Stewart et al. 2012) have shown little or no differences between one-
stage and two-stage models under specific conditions. Furthermore, for situations such

© 2015 StataCorp LP st0384



370 Two-stage IPD meta-analysis

as random-effects analysis of time-to-event data, one-stage solutions are just becoming
available (Bowden et al. 2011; Crowther, Look, and Riley 2014). Partly for this reason,
the most common approach used with time-to-event data is the two-stage approach
(Simmonds et al. 2005).

In practice, the two-stage approach is appealing in its simplicity and because it
can call on extensive AD meta-analysis literature, including the Cochrane Handbook
(Higgins and Green 2011). Two-stage models can offer quick and unbiased answers,
especially for reviews of randomized controlled trials (RCTs), where studies are wholly
independent and confounding is minimized. Also, for some situations, a one-stage model
would require innovative techniques. Furthermore, studies without IPD available may
be included as a sensitivity analysis (Riley et al. 2008) by simply including AD from
publications and by using secondary requests for additional data (for example, an effect
estimate adjusted for extra covariates) after an initial request for IPD has failed. Never-
theless, two-stage IPD analysis in Stata has not previously been straightforward. Now,
ipdmetan provides a comprehensive two-stage package.

One motivation for collecting IPD is the possibility of assessing differential responses
to treatment—in other words, of analyzing treatment-covariate interactions. In previous
work (Fisher et al. 2011), we discussed the fundamentally different approaches to the
analysis of such data and concluded that a two-stage approach is again suitable in
many situations, especially compared with older methods. In future work, we hope to
expand on those suggestions and discuss how trialists might facilitate meta-analysis of
interactions, even if they are unwilling or unable to provide IPD, by presenting subgroup
analyses clearly and consistently and thus allowing aggregate estimates to be calculated.

The standard method of presenting meta-analysis results is a forest plot, in which
the results from each study are plotted together with the overall result. Previous Stata
AD meta-analysis commands produce forest plots as standard, and such plots transfer
naturally to two-stage IPD analysis. Results from one-stage models may also be plotted
in this way, but with greater complications. The ipdforest command (Kontopantelis
and Reeves 2013) is one approach to this; another might be to present two-stage study
results alongside a one-stage pooled result. Forest plots for ipdmetan are created using
code based heavily on that written for the metan command (Harris et al. 2008) but
modified and updated for increased flexibility. They are produced by the program
forestplot, which is called by ipdmetan but can also be run by itself, giving the user
more control.

Finally, the ipdmetan package also includes the following “wrapper” programs, which
I do not describe in detail here: admetan, an AD routine similar to metan; petometan,
a routine for performing IPD meta-analysis of time-to-event data using the Peto log-
rank approach (Yusuf et al. 1985); and ipdover, a routine that creates forest plots of
subgroups within one trial.
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2 Two-stage IPD meta-analysis

2.1 Basic principles

Two-stage meta-analysis methodology involves first fitting the desired model to the
data from each study in turn. This gives study-effect estimates and variances, which
are denoted here by θi and σ

2
i , respectively. These are assumed to be observed without

error in the second (pooling) stage. Let θ denote the true pooled effect to be estimated

by θ̂. A suitable reference for most of what follows is Deeks, Altman, and Bradburn
(2001), with extra references given where appropriate.

ipdmetan uses inverse-variance weighting, with weights denoted by wi = 1/σ2
i .

The Peto (or log-rank) method for time-to-event outcomes is equivalent to an inverse-
variance analysis, and it can be performed using ipdmetan as described in section 4.5.
The built-in commands cc or tabodds can be used to perform IPD meta-analysis with
Mantel–Haenszel weighting for binary outcomes.

The fixed-effects inverse-variance weighted pooled effect and its variance are calcu-
lated as

θ̂ =

∑
i

wiθi
∑
i

wi
, Var

(
θ̂
)
=

1∑
i

wi

The standard Cochran heterogeneity statistic Q is defined as

Q =
∑

i

wi

(
θi − θ̂

)2

and is distributed as chi-squared with k − 1 degrees of freedom (d.f.), where k is the
number of included studies.

Given an estimate of between-study variance τ2, the random-effects inverse-variance
weighted pooled effect (and variance) is calculated by replacing the fixed-effects weights
wi with random-effects weights w∗

i = 1/(σ2
i + τ

2), which incorporate the between-study
variance τ2. The most common estimator of τ2 is the DerSimonian–Laird (DL) estimator
τ2DL (see section 2.2).

In addition to Q and τ2, two further heterogeneity measures are commonly used:
I2 and H2

M (introduced by Higgins and Thompson [2002] and Mittlböck and Heinzl
[2006]). We first define the “typical” or “average” within-study variance (Higgins and
Thompson 2002) as

s2 =

∑
i

wi(k − 1)

(∑
i

wi

)2

−∑
i

w2
i

I2 and H2
M can then be defined as follows:

I2 =
τ2

τ2 + s2
; H2

M =
τ2

s2
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If τ2 = τ2DL, then the algebra may be rearranged to form the alternative formula

I2 =
Q− d.f.

Q
; H2

M =
Q− d.f.

d.f.

where d.f. = k − 1 is the number of d.f. associated with Q (as defined in section 2.1).

Therefore, I2 and H2
M are measures of the relative magnitude of the between-study

variance τ2 and within-study variance s2. Alternatively, if τ2 = τ2DL, then I
2 and H2

M

are measures of how much the point estimate of Q exceeds (or otherwise) its d.f. I2

is the more well known of the two and is readily interpretable on the percentage scale.
However, it is a nonlinear function of τ2, such that an increase from, say, 80% to 90%
implies a far greater increase in τ2 than an increase from 20% to 30%. H2

M does not
have this limitation and is also less affected by the value of k, but it is perhaps less
readily interpretable.

2.2 Random-effects methods

In this section, I describe the random-effects models currently available within the
ipdmetan command.

Noniterative τ2 estimators

The noniterative formulas for τ2 presented in table 1 are based on moment-based ap-
proximations to the expectation of Q (DerSimonian–Laird; Hedges), a reparameteriza-
tion of the total variance of θi (Sidik–Jonkman), or Bayesian considerations (Rukhin).
Estimates of τ2 are typically truncated at zero, but the Sidik–Jonkman and Rukhin bp

estimators are always positive.
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Table 1. Noniterative τ2 estimators

Name Reference Definition

DerSimonian– DerSimonian and
τ2DL =

Q− (k − 1)

∑
i

wi −

∑
i

w2
i

∑
i

wi

Laird Laird (1986)

Hedges “variance Sidik and Jonkman

τ2VC =

∑
i

(
θi − θ

)2

k − 1
−

∑
i

σ2
i

k
where θ =

∑
i θi/k

component” (2007)

Cochran DerSimonian and
Kacker (2007)

Sidik–Jonkman Sidik and Jonkman

τ2SJ =

∑
i

w̃i

(
θi − θ̃

)

k − 1
(2007)

where w̃i = {(σ2
i )/(τ

2
0 ) + 1}−1 are

inverse-variance weights where the
variance estimator is based on a
parameterization involving ratios of the
within-study variances σ2

i to a crude
initial estimate τ20 > 0 of the true

heterogeneity variance, and θ̃ is the
pooled estimate based on weights w̃i

Rukhin Bayes Rukhin (2013)

τ2B0 =

∑
i

(
θi − θ

)2

k + 1

−
(N − k)(k − 1)

∑
i

σ2
i

k(k + 1)(N − k + 2)

estimators

where N is the total number of
participants within the k included
studies

τ2BP =

∑
i

(
θi − θ

)2

k + 1
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The Sidik–Jonkman estimator requires a nonzero initial estimate τ20 , for which τ
2
VC

was suggested by Sidik and Jonkman (2007), with an arbitrary small value of 0.01 being
used in case τ2VC = 0. However, τ2 is not scale invariant, so it is arguably more appro-
priate to assume an arbitrarily small I2 instead, such as 1% (see the isq() suboption
to re() in section 3.2).

Iterative τ2 estimators

Iterative methods can be used to estimate τ2 with confidence limits and, in the case
of profile likelihood (PL), iterative confidence limits for θ. In table 2, w∗

i and θ̂∗ are
defined in terms of the current iteration of τ2.
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Table 2. Iterative τ2 estimators

Name Reference Definition

Approximate Biggerstaff and Point estimate τ2 = τ2DL

gamma Tweedie (1997)
Confidence limits for τ2 obtained by
profiling an approximate gamma
distribution for Q

Point estimate and standard error for θ
obtained from modified weights generated
by numerical integration

Mandel–Paule DerSimonian and

τ2GQ =
k

C

∑
i

w∗
i

(
θi − θ̂∗

)2

∑
i

w∗
i

−

∑
i

w∗
i σ

2
i

∑
i

w∗
i

where C is a critical value, as follows:
Point estimate C = k − 1
Lower confidence limit C = χ2

k−1;1−α/2

Upper confidence limit C = χ2
k−1;α/2

Kacker (2007)
Generalized Q Viechtbauer (2007)
Empirical Bayes Sidik and

Jonkman (2007)

Maximum Viechtbauer (2007)

τ2ML =

∑
i

w∗
i
2
(
θi − θ̂∗

)2

∑
i

w∗
i
2 −

∑
i

w∗
i
2σ2
i

∑
i

w∗
i
2

likelihood (ML)

Confidence limits for τ2 obtained by
likelihood profiling

PL Hardy and τ2 same as for ML.
Thompson (1996) Confidence limits for θ obtained by nested

likelihood profiling

Restricted Viechtbauer (2007)

τ2REML =

∑
i

w∗
i
2
(
θi − θ̂∗

)2

∑
i

w∗
i
2

maximum-
likelihood
(REML)

−

∑
i

w∗
i
2σ2
i

∑
i

w∗
i
2 +

1∑
i

w∗
i

Confidence limits for τ2 obtained by
likelihood profiling
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Extensions to the DerSimonian–Laird model

a. Hartung–Knapp variance estimator

This approach, proposed by Hartung and Knapp (2001) and independently by

Sidik and Jonkman (2002), uses an alternative estimator of Var(θ̂) to give im-
proved coverage probability in the presence of between-study heterogeneity rather
than relying on accurate estimation of τ2. Given standard DerSimonian–Laird
random-effects weights w∗

i = 1/(σ2
i + τ

2
DL) and corresponding pooled effect θ̂∗, the

Hartung–Knapp variance estimator is defined as

Var
(
θ̂∗
)
=

∑
i

w∗
i

(
θi − θ̂∗

)2

(k − 1)
∑
i

w∗
i

This is used to construct the following t-based (1− α) confidence interval for θ̂∗:

θ̂∗ ± tk−1;1−α/2

√
Var

(
θ̂∗
)

b. Nonparametric bootstrap

Kontopantelis, Springate, and Reeves (2013) more recently suggested a simple
nonparametric bootstrap version of DerSimonian–Laird by sampling studies with
replacement and taking the mean of the truncated τ2DL estimates. This is intended
to increase the chance of detecting heterogeneity when the true value of τ2 is small.

Various simulation studies have been performed to assess the properties of the estima-
tors of θ and τ2 described above. Kontopantelis and Reeves (2012) concluded that the
PL and Hartung–Knapp methods gave the most accurate coverage probabilities for θ,
even when the true study effects were extremely nonnormally distributed. However,
confidence intervals may be too wide for small numbers of studies k; in this situa-
tion, they recommend the standard DerSimonian–Laird method. Rukhin (2013) and
Kontopantelis, Springate, and Reeves (2013) found that the Bayes estimator τ2BP gave
reliable coverage and accurate confidence intervals for small k, except when the true het-
erogeneity was also small, in which case the bootstrapped DerSimonian–Laird estimator
was preferable.

In terms of τ2, Sidik and Jonkman (2007) concluded that τ2GQ and τ2SJ were the

least biased point estimates of τ2. Viechtbauer (2007) found that the generalized Q and
approximate gamma models gave the most accurate confidence intervals for τ2.

Kontopantelis, Springate, and Reeves (2013) examined real-life meta-analysis data
from the Cochrane Collaboration and concluded that heterogeneity is often underes-
timated, especially for small k. They therefore propose that sensitivity analyses be
performed at specified levels of heterogeneity. Such a level might be moderate to high
to test the sensitivity of conclusions regarding θ, or it may be minimal to simply force
nonzero heterogeneity (see the isq() suboption to re() in section 3.2).
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2.3 Interactions

What initially motivated the development of ipdmetan was unbiased estimation of
patient-level treatment-covariate interactions in IPD meta-analysis. As discussed in
Fisher et al. (2011), additional complexities exist for IPD that do not occur with AD.
With AD, there is just one observation per study; hence, only “study-level” charac-
teristics can be recorded—data such as year of publication, specifics of treatment, or
study-average patient characteristics. Such data can be used only to investigate how
characteristics of studies may affect study-aggregate treatment effects via techniques
such as meta-regression and study-subgroup analysis. However, to investigate how treat-
ment effects differ at the patient level requires IPD. An AD analysis of study-average
patient characteristics (for example, mean age or proportion male) is at risk of bias as
an estimate of the true patient-level interaction effect.

Patient-level characteristics are often categorical—for example, they may be cate-
gorized by sex, age subgroups, or disease stage. It may be tempting to compare by-
subgroup treatment effects to estimate an interaction. However, this is again biased if
interpreted as a measure of treatment-effect difference between patients (Fisher et al.
2011). Instead, treatment-covariate interactions must be estimated within each study
separately and pooled thereafter in the same way as overall treatment effects. (Of
course, continuous patient-level characteristics do not present such issues.)

Assume a series of linear regressions (extension to generalized linear models or time-
to-event regressions is straightforward) on patients j within studies i as follows (the
parentheses around i highlight the two-stage nature of the analysis):

y(i)j = α(i) + β(i)x(i)j + γ(i)z(i)j + δ(i)x(i)jz(i)j

y is the outcome; x the treatment; z the covariate; and α, β, γ, and δ represent study,
treatment, covariate, and interaction effect coefficients, respectively. We equate the
interaction-effect estimates δ(i) with the study estimates θi in section 2.1 and proceed
accordingly (Simmonds and Higgins 2007; Fisher et al. 2011, Appendix B). Such mod-
els may be extended to include adjustment for (within-study) covariates.

Interaction models are often complex, and the two-stage approach is suitable for only
simple cases—principally meta-analyses of RCTs where other factors may be assumed
to be balanced. Furthermore, only one coefficient may be pooled, placing limitations
on variable transformation (for example, use of fractional polynomials [Royston and
Altman 1994]) and precluding the recovery of absolute effects. However, they are cer-
tain to be free of bias from between-study effects (Simmonds et al. 2005; Fisher et al.
2011, Appendix B) and to provide a quick and accurate estimate of the within-study
interaction effect size. Although one-stage models permit a far greater variety of ran-
dom effects, which may increase efficiency, the resulting coefficients must be interpreted
carefully to ensure the intended question is answered.
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3 The ipdmetan command

3.1 Syntax

ipdmetan is a prefix command; see [U] 11.1.10 Prefix commands. Its basic syntax is

ipdmetan
[
exp list

]
, study(study id

[
, missing

]
)
[
by(subgroup id

[
, missing

]
)

eform option effect(string) interaction keepall messages nograph

notable nohet nooverall nosubgroup nototal ovwt sgwt

poolvar(model coefficient) random re
[
(re model)

]
sortby(varname | n)

lcols(cols info) rcols(cols info) plotid(varname | BYAD
[
, list nograph

]
)

ovstat(q) saving(filename
[
, replace stacklabel

]
)

forestplot(forestplot options) ad(...)
]
: estimation command . . .

where estimation command is the model to be fit within each study. Typically, this will
be a built-in command that changes the contents of e(b), but it could be any command
that returns an effect size and standard error (or statistics that may be combined to
form such). if, in, and weights should be supplied to estimation command rather than
to ipdmetan (that is, after the colon rather than before it). Relevant declarations of
data structure (for example, stset, tsset, and xtset) must be done before running
ipdmetan.

When estimation command does not change the contents of e(b), expressions that
evaluate the effect size and standard error to be collected and pooled must be specified
manually by using exp list. (An optional third statistic is the number of observations.)
Otherwise, exp list defaults to b[varname] se[varname], where varname is the first
independent variable within estimation command.

3.2 Options

The options in this section (supplied directly to ipdmetan) control aspects of model
fitting, computation, creation of the results set, on-screen tabulation of results, and
saved statistics. Some options included are relevant to the forest plot, but they are used
within the main routine of ipdmetan. The only suboptions that should be supplied to
the forestplot() option are those controlling graphical presentation of the results set
outputted by ipdmetan.

study(study id
[
, missing

]
) specifies the variable that contains the study identifier,

which must be either integer valued or string. study() is required.

missing requests that missing values be treated as potential study identifiers (the
default is to exclude them).
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by(subgroup id
[
, missing

]
) specifies a variable identifying subgroups of studies (and

must therefore be constant within studies), which must be integer valued or string.
If an AD dataset is specified and contains a variable named subgroup id, subgrouping
will be extended to the AD observations.

missing requests that missing values be treated as potential subgroup identifiers
(the default is to exclude them).

eform option (see [R] eform option) specifies that effect sizes and confidence limits be
exponentiated in the output (table and forest plot) and generates a heading for the
effect-size column.

Note that ipdmetan does not check the validity of the particular eform option; for
example, it does not check whether estimation command is a survival model if hr is
supplied.

effect(string) specifies a heading for the effect-size column, overriding any heading
generated by eform option.

interaction specifies that estimation command contain one or more interaction effects
expressed using factor-variable syntax (see [U] 11.4.3 Factor variables) and that
the first valid interaction effect be pooled across studies. This is a helpful shortcut
for simple interaction analyses, but it is not foolproof or comprehensive. The output
should be checked and, if necessary, the analysis rerun with the poolvar() option.

keepall specifies that all values of study id be visible in the output (table and forest
plot), even if no effect could be estimated (for example, because of insufficient ob-
servations or missing data). For such studies, (Insufficient data) will appear in
place of effect estimates and weights.

messages requests that information be printed to screen whether the effect size and
standard-error statistics have been successfully obtained from each study and, if
applicable, whether the iterative random-effects calculations converged successfully.

nograph and notable suppress construction of the forest plot and the table of effect
sizes, respectively.

nohet suppresses all heterogeneity statistics.

nooverall suppresses the overall pooled effect so that, for instance, subgroups are con-
sidered independently. It also suppresses between-subgroup heterogeneity statistics
(if applicable).

nosubgroup suppresses the within-subgroup pooled effects (if applicable) so that sub-
groups are displayed separately but with a single overall pooled effect with associated
heterogeneity statistics.

nototal requests that estimation command not be fit within the entire dataset, for ex-
ample, for time-saving reasons. By default, such fitting is done to check for problems
in convergence and in the validity of requested coefficients and returned expressions.
If nototal is specified, either poolvar() or exp list must be supplied, and a message
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appears above the table of results warning that estimates should be double checked
by the user.

ovwt and sgwt override the default choice of whether to display overall weights or
within-subgroup weights in the screen output and forest plot. Note that because
weights are normalized, these options do not affect estimation of pooled effects or
heterogeneity statistics.

poolvar(model coefficient) specifies the coefficient from e(b) that is to be pooled when
the default behavior of ipdmetan fails or is incorrect. model coefficient should be a
variable name, a level indicator, an interaction indicator, or an interaction involving
continuous variables (c.f. syntax of [R] test). Equation names can be specified
using the format poolvar(eqname:varname). This option is appropriate only when
estimation command changes the contents of e(b); otherwise, see exp list.

random or re specifies DerSimonian and Laird random effects.

re(re model) specifies other possible random-effects models. The default is the Der-
Simonian and Laird random-effects model. Other currently supported models (see
section 2.2) are the following:

dl specifies the DerSimonian–Laird estimator (equivalent to specifying re alone,
with no suboption); this is the default.

dlt or hk specifies the DerSimonian–Laird with Hartung–Knapp t-based variance
estimator.

bdl or dlb specifies the bootstrapped DerSimonian–Laird estimator.

ca, he, or vc specifies the Hedges variance-component estimator, also known as the
Cochran estimator.

sj specifies the Sidik–Jonkman two-step estimator.

b0 and bp specify Rukhin’s B0 and BP estimators, respectively.

bs, bt, or gamma specifies the Biggerstaff–Tweedie approximate gamma model.

eb, gq, genq, mp, or q specifies the empirical Bayes estimator, also known as the
generalized Q estimator and the Mandel–Paule estimator.

ml specifies the ML estimator.

pl specifies the PL model.

reml specifies the REML estimator.

sa
[
, isq(real)

]
specifies the sensitivity analysis with a fixed user-specified value

of I2 (between 0 and 1, with default isq(0.8)). See Kontopantelis, Springate,
and Reeves (2013).
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Note that the approximate gamma, generalized Q, ML, PL, and REML models re-
quire the mm root() function; and the bootstrapped DerSimonian–Laird model re-
quires the mm bs() and mm jk() functions from the moremata package (ssc install

moremata) (Jann 2005). The approximate gamma model also requires the integrate
command (ssc install integrate) (Mander 2012).

sortby(varname | n) allows user-specified ordering of studies in the table and forest
plot. The default ordering is by study id. Note that sortby() does not alter the
data in memory.

Specify sortby( n) to order the studies by their first appearance in the data by
using the current sort order.

lcols(cols info) and rcols(cols info) define columns of additional data to be presented
to the left or right of the forest plot. These options are carried over from metan;
however, for IPD, they must first be generated from the existing dataset and thus
require more complex syntax.

cols info has the following syntax, which is based on that of collapse (see [D] col-
lapse),
[
(stat)

] [
newname=

]
item

[
%fmt "label"

] [ [
newname=

]
item

[
%fmt "label"

] ]

. . .
[ [

(stat)
]
...

]

where stat is as defined for collapse; newname is an optional user-specified vari-
able name; item is either a numeric expression (in parentheses) involving returned
quantities from estimation command or a variable currently in memory; %fmt is an
optional format; and "label" is an optional variable label. An example using these
options is in section 4.5.

plotid(varname | BYAD
[
, list nograph

]
) specifies one or more categorical vari-

ables to form a series of groups of observations in which specific aspects of plot
rendition may be affected using plot

[
#
]
opts (see Forest plot suboptions). The

groups of observations will automatically be assigned ordinal labels (1, 2, . . .) on
the basis of the ordering of varlist. Note that plotid() does not alter the data in
memory.

ovstat(q) displays Q statistics instead of I-squared statistics.

saving(filename
[
, replace stacklabel

]
) saves the forest plot “results set” (see sec-

tion 4.6) created by ipdmetan in a dataset for further use or manipulation.

replace overwrites filename.

stacklabel takes the variable label from the leftmost column variable (usually
study id), which would usually appear outside the plot region as the column
heading, and copies it into a new first row in filename. This allows multiple such
datasets to be appended without this information being overwritten.

forestplot(forestplot options) specifies other options to pass to forestplot. See For-
est plot suboptions below.
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The AD option

ipdmetan is designed so that IPD and AD can be analyzed together with a single com-
mand. Because of their differing structures (IPD is one observation per patient, so there
are multiple observations per study; AD is one observation per study), AD must be
stored in a separate Stata dataset.

The syntax for the ad() option is as follows:

ad(filename
[
if
] [

in
]
, vars(namelist) ad options)

where filename is an existing Stata dataset containing the AD.

vars(namelist) contains the names of variables (within filename) containing the effect
size and either a standard error or lower and upper 95% confidence limits on the
linear scale. If confidence limits are supplied, they must be derived from a normal
distribution, or the pooled result will be incorrect (see help admetan).

It is assumed that a study identifier variable exists with the same name as in the
data currently in memory (that is, the IPD). If such a variable cannot be found, studies
in the AD dataset are numbered sequentially, following the largest study identifier value
used for the IPD. Subgroup variables may also be present in the AD dataset and may be
referenced using the main by() option.

ad options can be the following:

byad specifies that IPD and AD be treated as subgroups rather than as a single set
of estimates.

npts(varname) allows participant numbers (stored in varname within filename) to
be displayed in tables and forest plots.

Forest plot suboptions

Most of the forest plot options for metan can be supplied to ipdmetan via the option
forestplot(), together with most appropriate [G-3] twoway options. The most sig-
nificant extension that ipdmetan brings is the ability to apply specific plot rendition
options (color, line patterns, etc.) to specific groups of observations via the plotid()

option (see above).

The syntax for these options is

plot
[
#
]
opts(plot options)

where plot refers to the plot feature, which can be box, ci, diam, oline, point, pci,
or ppoint; # is the (optional) observation group identifier assigned by plotid(); and
plot options are [G-3] twoway options appropriate to the plot type used to construct
the feature, as described in Harris et al. (2008).
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The extra plot features pci and ppoint, not included in metan, are used when pooled
estimates must be represented by (differently rendered) point estimates and confidence
intervals instead of by diamonds. See the forestplot documentation for more details.

3.3 Stored results

ipdmetan stores the following in r() (with some variation):

Scalars
r(k) number of included studies k r(tausq) between-study variance tau-
r(n) number of included squared

participants r(sigmasq) average within-study variance
r(eff) overall pooled effect size r(Isq) heterogeneity measure I2

r(se eff) standard error of pooled r(HsqM) heterogeneity measure H2
M

effect size
r(Q) Cochran Q heterogeneity

statistic (on k − 1 d.f.)

Macros
r(command) full estimation command line r(estvar) name of pooled coefficient
r(cmdname) estimation command name r(re model) random-effects model used

Matrices
r(coeffs) matrix of study and subgroup

identifiers, effect coefficients,
numbers of participants, and
weights

Certain iterative random-effects models can save the following additional results (see
help mf mm root for interpretations of convergence success values):

Scalars
r(tsq var) estimated variance of tau-squared
r(tsq lci) lower confidence limit for tau-squared
r(tsq uci) upper confidence limit for tau-squared
r(rc tausq) convergence of tau-squared point estimate
r(rc tsq lci) convergence of tau-squared lower confidence limit
r(rc tsq uci) convergence of tau-squared upper confidence limit
r(rc eff lci) convergence of effect-size lower confidence limit
r(rc eff uci) convergence of effect-size upper confidence limit

4 Example

The motivating example is an IPD meta-analysis of RCTs evaluating the effectiveness of
postoperative radiotherapy in patients with completely resected nonsmall cell lung can-
cer (Burdett, Stewart, and PORT Meta-analysis Group 2005; Burdett et al. 2013). The
outcome measure in each trial is overall survival, that is, censored time to death from
any cause. A number of covariate measurements were also available but not necessarily
for all trials or patients.

For an example dataset to be made publicly available, a simulated dataset was
generated with similar characteristics to the postoperative radiotherapy data. It is this
simulated dataset that will be discussed henceforth. There are 10 trials of varying size



384 Two-stage IPD meta-analysis

in 2 trial subgroups with arbitrary names. Sex, age, and disease-stage covariates have
also been generated.

4.1 Basic use

Our first example aims to cover various aspects of inverse-variance meta-analysis si-
multaneously, because none of this functionality is particularly complex. We perform a
meta-analysis of main treatment effects fit from Cox models stratified by sex, pooling
the log hazard-ratios using the fixed-effects inverse-variance method.

. use ipdmetan_example

. quietly stset tcens, fail(fail)

. ipdmetan, study(trialid) hr by(region)
> forest(favours(Favours treatment # Favours control)): stcox trt, strata(sex)

Studies included: 10
Patients included: 1642

Meta-analysis pooling of main (treatment) effect estimate trt
using Fixed-effects

Region and Haz.
Trial name Ratio [95% Conf. Interval] % Weight

Europe
London 1.475 1.015 2.143 10.93
Paris 1.197 0.789 1.816 8.78
Amsterdam 1.742 1.080 2.810 6.68
Stockholm 1.440 0.816 2.542 4.73
Madrid 2.242 1.501 3.350 9.47

Subgroup effect 1.593 1.312 1.934 40.59

North America
New York 0.740 0.465 1.176 7.10
Chicago 0.774 0.558 1.074 14.29
Los Angeles 1.058 0.707 1.584 9.38
Toronto 1.082 0.816 1.434 19.21
College Station, TX 0.689 0.461 1.031 9.42

Subgroup effect 0.885 0.754 1.039 59.41

Overall effect 1.123 0.993 1.271 100.00

Tests of effect size = 1:
Europe z = 4.707 p = 0.000
North America z = -1.495 p = 0.135
Overall z = 1.846 p = 0.065

Q statistics for heterogeneity (calculated using Inverse Variance weights)

Value df p-value

Europe 5.01 4 0.287
North America 5.40 4 0.249
Overall 31.39 9 0.000
Between 20.98 1 0.000
Between:Within (F) 6.02 1, 9 0.037
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The command stcox trt, strata(sex) was first fit consecutively to each level of
trialid. The resulting log hazard-ratios and standard errors b[trt] and se[trt]

are displayed in the table and forest plot (figure 1). Specifying the eform option hr

exponentiated the estimates into hazard ratios, while the by() option gave us within-
subgroup pooled estimates and tests of heterogeneity within and between subgroups
and overall. The form of the rest of the output and the forest plot should be familiar
to users of metan (Harris et al. 2008).

Heterogeneity between groups: p = 0.000

North America

Europe

Trial name

Region and

Overall (I−squared = 71.3%, p = 0.000)

Subtotal (I−squared = 25.9%, p = 0.249)

College Station, TX

Toronto

Los Angeles

Chicago

New York

Subtotal (I−squared = 20.1%, p = 0.287)

Madrid

Stockholm

Amsterdam

Paris

London

(95% CI)

Haz. Ratio

1.12 (0.99, 1.27)

0.88 (0.75, 1.04)

0.69 (0.46, 1.03)

1.08 (0.82, 1.43)

1.06 (0.71, 1.58)

0.77 (0.56, 1.07)

0.74 (0.47, 1.18)

1.59 (1.31, 1.93)

2.24 (1.50, 3.35)

1.44 (0.82, 2.54)

1.74 (1.08, 2.81)

1.20 (0.79, 1.82)

1.47 (1.01, 2.14)

Weight

%

100.00

  59.41

    9.42

  19.21

    9.38

  14.29

    7.10

  40.59

    9.47

    4.73

    6.68

    8.78

  10.93

Favours treatment  Favours control

1 2.5 4.25

Figure 1. Basic forest plot

4.2 Treatment-covariate interactions

The syntax of ipdmetan allows any (single) estimated quantity and its standard error
to be pooled across studies. This includes simple interaction models of the form given
in section 2.3. Specifying the interaction option tells ipdmetan to identify and pool
the treatment-covariate interaction coefficient and to use different symbols and effect-
size column headings on the forest plot to differentiate such analyses from those of main
effects. (Note that all of this behavior can be reproduced manually using other options.)

Studies often have insufficient covariate data, and such studies will be excluded from
the corresponding interaction analysis. The default is to remove excluded studies from
the output. However, this can be overridden with the keepall option, which will instead
output “(Insufficient data)” for such studies in place of the effect size, the standard
error, and the weighting in both table and forest plot. (This option applies generally. I
mention it here because it is likely to have greater relevance.)
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The screen output has only minor differences from that of a main-effects analysis,
so we show only the forest plot here (figure 2). The default for interaction analyses is
to use solid circles for the study effects and a clear circle for the pooled effect.

. ipdmetan, study(trialid) interaction hr keepall forest(favours("Favours
> greater treatment effect" "with higher disease stage"
> # "Favours greater treatment effect" "with lower disease stage")
> boxsca(200) fp(1)): stcox trt##c.stage

Trial name

Overall (I−squared = 44.9%, p = 0.092)

College Station, TX

Amsterdam

London

Toronto

Los Angeles

Chicago

New York

Madrid

Stockholm

Paris

Ratio (95% CI)

Interact. Haz.

1.19 (1.00, 1.42)

(Insufficient data)

(Insufficient data)

(Insufficient data)

1.16 (0.82, 1.65)

0.79 (0.49, 1.27)

0.98 (0.66, 1.46)

0.99 (0.57, 1.72)

2.08 (1.29, 3.33)

1.39 (0.69, 2.79)

1.57 (0.95, 2.57)

Weight

%

100.00

  25.05

  13.68

  18.97

    9.83

  13.70

    6.32

  12.45

Favours greater treatment effect
with higher disease stage

Favours greater treatment effect
with lower disease stage

1 2.5 4.25

Figure 2. Forest plot of interactions

4.3 Random effects

We now show the syntax and output of the random-effects options. DerSimonian–Laird,
the most common random-effects model, is specified with “re”.
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Example 1: DerSimonian–Laird random effects

. ipdmetan, study(trialid) nograph re: stcox trt

(output omitted )

Heterogeneity Measures

Value df p-value

Cochran Q 31.73 9 0.000
I2 (%) 71.6%
Modified H2 2.525
tau2 0.0985

I2 = between-study variance (tau2) as a percentage of total variance
Modified H2 = ratio of tau2 to typical within-study variance

Other random-effects models are specified as options to “re”, as shown in the follow-
ing example (see section 2.2 for details of the Generalized Q model). Note that iterative
models output confidence limits for heterogeneity in addition to point estimates.

Example 2: Generalized Q random effects

. ipdmetan, study(trialid) nograph re(q): stcox trt

(output omitted )

Heterogeneity Measures

Value df p-value

Cochran Q 31.73 9 0.000

Value [% Conf. Interval]

I2 (%) 82.7% 73.8% 93.1%
Modified H2 4.779 2.823 13.390
tau2 0.1864 0.1101 0.5223

I2 = between-study variance (tau2) as a percentage of total variance
Modified H2 = ratio of tau2 to typical within-study variance

4.4 Aggregate data

Often IPD cannot be obtained for all eligible studies. In such cases, it may help to do a
sensitivity analysis comparing “extra” AD estimates with the main body of IPD. Some
authors (Riley et al. 2008) have even suggested pooling both IPD and AD together.
Either of these approaches is straightforward with ipdmetan. Here we demonstrate
the former by first artificially constructing an aggregate dataset from one of the trial
subgroups we defined earlier by using the saving() option. Note the following (see also
section 4.6):
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• Saved datasets have a standard format where the study variable is named STUDY.
Therefore, we change our trialid variable to match (using clonevar) and so
obtain correct labels throughout.

• We restrict the ad() option to USE==1 so that only individual study estimates
are included and not the pooled estimate.

. quietly ipdmetan, study(trialid) hr nograph saving(region2.dta): stcox
> trt if region==2, strata(sex)

. clonevar _STUDY = trialid

. ipdmetan, study(_STUDY) hr ad(region2.dta if _USE==1, vars(_ES _seES)
> npts(_NN) byad) nooverall: stcox trt if region==1, strata(sex)

Studies included from IPD: 5
Patients included: 656

Studies included from aggregate data: 5
Patients included: 986

Meta-analysis pooling of main (treatment) effect estimate trt
using Fixed-effects

Data source and Haz.
Trial name Ratio [95% Conf. Interval] % Weight

IPD
London 1.475 1.015 2.143 26.93
Paris 1.197 0.789 1.816 21.63
Amsterdam 1.742 1.080 2.810 16.46
Stockholm 1.440 0.816 2.542 11.64
Madrid 2.242 1.501 3.350 23.34

Subgroup effect 1.593 1.312 1.934 100.00

Aggregate
New York 0.740 0.465 1.176 11.96
Chicago 0.774 0.558 1.074 24.06
Los Angeles 1.058 0.707 1.584 15.79
Toronto 1.082 0.816 1.434 32.33
College Station, TX 0.689 0.461 1.031 15.86

Subgroup effect 0.885 0.754 1.039 100.00

Tests of effect size = 1:
IPD z = 4.707 p = 0.000
Aggregate z = -1.495 p = 0.135

Q statistics for heterogeneity (calculated using Inverse Variance weights)

Value df p-value

IPD 5.01 4 0.287
Aggregate 5.40 4 0.249

The numerical output is the same as in our first example, as expected. Note that to
treat the IPD and AD as two subgroups, we specified the byad option; this also labels the
subgroups appropriately in both the table and forest plot (not shown). The nooverall
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option requests that the table and forest plot present IPD and AD separately and not
present an “overall” pooled result. This will also present weights and effect lines by
subgroup rather than overall. Above the table, the number of trials and patients are
also given separately for IPD and for AD. If the number of patients is missing for one or
more observations in the AD dataset, ipdmetan will output a missing value here.

4.5 Further functionality

In this section, I discuss a few more useful features of ipdmetan and forestplot. For
this next example, we return to the original analysis in section 4.1, but instead of Cox
regression, we will use the noniterative Peto log-rank method. This is based on the
log-rank test done by sts test, but it requires values stored in the vector u and matrix
V (see documentation of the mat() option in [ST] sts test) to estimate the effect
size (log hazard-ratio) and standard error for each trial. Therefore, we must supply
ipdmetan with appropriate expressions for these quantities as an exp list. Using our
current example, we also demonstrate the use of lcols() and rcols() by presenting the
O−E and V statistics (Yusuf et al. 1985), and we demonstrate the use of plot

[
#
]
opts

by rendering the weighted boxes and confidence interval lines in a light shade for the
European trials (with capped confidence intervals) and in a darker shade for the North
American trials. We proceed as follows (see figure 3):

. ipdmetan (u[1,1]/V[1,1]) (1/sqrt(V[1,1])), study(trialid) hr
> rcols((u[1,1]) %5.2f "o-E(o)" (V[1,1]) %5.1f "V(o)")
> by(region) plotid(region)
> forest(nooverall nostats nowt
> favours(Favours treatment # Favours control)
> box1opts(mcolor(gs10)) ci1opts(lcolor(gs10) rcap)
> box2opts(mcolor(gs6)) ci2opts(lcolor(gs6))): sts test trt, mat(u V)
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North America

Europe

Trial name

Region and

Subtotal (I−squared = 29.2%, p = 0.227)

College Station, TX

Toronto

Los Angeles

Chicago

New York

Subtotal (I−squared = 44.9%, p = 0.123)

Madrid

Stockholm

Amsterdam

Paris

London

o−E(o)

−15.74

  −8.28

    4.58

    1.99

  −9.32

  −4.91

  50.10

  20.34

    3.26

  10.12

    3.62

  10.95

V(o)

154.5

  23.3

  50.0

  24.0

  35.5

  17.8

106.8

  22.7

  12.3

  17.5

  22.9

  28.5

Favours treatment  Favours control

1 2.5 4.25

Figure 3. Use of advanced forest plot options

For the right-hand columns, we have requested that the usual statistics and weights
be suppressed (options nostats and nowt) and replaced with the observed minus-
expected event count and variance of observed event count (stored by sts test in
u[1,1] and V[1,1], respectively). Following each statistic is an (optional) format and
column heading. (Note that this plot may be re-created with a Peto log-rank meta-
analysis by using petometan, which is part of the ipdmetan package.)

Forest plots, with their columns of text and numbers, are unnatural to Stata, and
sometimes, plots produced by ipdmetan or forestplot may be deficient in appearance
(text too small or overlapping, too much white space, etc.). There are many options
available that can correct such deficiencies (see the help file).

4.6 Use of results sets

Within a two-stage framework, IPD and AD may be considered a “long form” and “short
form” of the same data. It may be useful to convert IPD to AD to perform certain
tasks. This can be accomplished by using the saving() option with ipdmetan (see
section 3.2), which saves an AD results set in a format suitable for forestplot. Hence,
running forestplot on the results set will give the same plot as running ipdmetan on
the original data.

As an example, the results set outputted by the analysis in section 4.1 is shown
in the table below (value labels not displayed). This format includes not only the
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study estimates but also the pooled estimates with extra lines for subgroup headings
and heterogeneity descriptions and blank lines for spacing. The values of the variable
USE specify the function of each observation, while text (study names, headings, etc.,
excluding extra data specified in lcols() and rcols()) is stored in the variable LABELS.

Possible uses of such results sets include the following:

• Restricting the results set to observations for which USE==1 (that is, the in-
dividual study estimates) creates a standard AD dataset that can be analyzed
with any AD meta-analysis command. Hence, features not yet supported by
ipdmetan can be used, such as prediction intervals with metan (Harris et al. 2008)
or the “permutations” model of metaan (Kontopantelis and Reeves 2010), as well
as related analyses such as meta-regression on study-level covariates (metareg,
Harbord and Higgins [2008]) or network meta-analysis (mvmeta, White [2009]).

• If the initial stage in ipdmetan of fitting the model to each study proves time
consuming, it need be performed only once. Subsequent tasks, such as investigat-
ing random-effects models (see previous bullet) or tweaking the forest plot (see
following bullet), can be done with admetan or forestplot using the results set.

• The results set contains all the information that forestplot needs to construct
the plot. Therefore, the layout of the forest plot can be customized by altering the
results set; for instance, it can be altered to amend labels or titles, add or remove
lines, or add or format extra columns of data (to be specified with lcols() and
rcols()). For example, strings of the form “n/N” can be presented, where n is
the number of events and N the total number of patients.

• More complex forest plots may not be possible to create with a single call to
ipdmetan. Instead, ipdmetan might be run on a series of different datasets and
results saved. The standard formatting of results sets allows straightforward ap-
pending to a single dataset using append (see [D] append), potentially with the
generate suboption to create a variable to pass to the plotid() suboption of
forestplot() (see section 4.5). It may then be necessary to alter labels or titles
(see previous bullet).
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5 Discussion

Meta-analysis is a widely used and constantly evolving technique that has made an
enormous contribution to evidence-based policy and practice, particularly in health care.
Although one-stage hierarchical models are increasingly seen and may have statistical
advantages in some situations, the two-stage approach remains commonplace when IPD

are available.

The ipdmetan command is a tool for performing two-stage IPD analysis simply and
straightforwardly; it gives a standardized output and publication-standard forest plots
(based on the original forest plot subroutine within metan). The syntax is designed to
encompass varying levels of complexity, and the dedicated forestplot command allows
great flexibility of presentation. The package also provides useful capabilities such as
trial subgroup plots (via ipdover) and inclusion of AD.

Future work might include the ability to present prognostic effects in a forest plot
with respect to a reference, as well as the ability to use multiple imputation for missing
covariates using mi.
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