958 research outputs found

    The mutualism of Melissotarsus ants and armoured scale insects in Africa and Magadascar: distribution, host plants and biology

    Get PDF
    Είδη μυρμηγκιών του γένους Melissotarsus Emery είναι διαδεδομένα στην Αφροτροπική περιοχή (τρία είδη M. beccarii Emery, M. emeryi Forel και M. weissi Santschi) καθώς και ένα είδος στην Μαγαδασκάρη (M. insularis Santschi). Τα μυρμήγκια όλων αυτών των ειδών δημιουργούν τις στοές τους σε ζωντανό ξύλο διαφόρων δικοτυλήδονων δένδρων, κοντά στο φλοιό. Τα μυρμήγκια διατηρούν εντός των στοών πληθυσμούς διαφόρων ειδών κοκκοειδών εντόμων τηςοικογένειας Diaspididae. Στην παρούσα εργασία παρουσιάζεται μια ανασκόπηση πάνω στη γεωγραφική κατανομή της παρατηρούμενης συμβίωσης των ειδών μυρμηγκιών του γένους Melissotarsus και των δέκα ειδών κοκκοειδών εντόμων της οικογένειας Diaspididae, καθώς και των φυτών ξενιστών όπου παρατηρείται η συμβίωση. Η οικολογία της παρατηρούμενης συμβίωσης συζητείται καθώς και τα πιθανά οφέλη που προκύπτουν για τα είδη που συμβιώνουν.Species of the ant genus Melissotarsus Emery are widespread in the Afrotropical region (three species, namely M. beccarii Emery, M. emeryi Forel and M. weissi Santschi) and in the Madagascar region (one species, namely M. insularis Santschi). The ants of all these species tunnel their galleries in live wood of various dicotyledonous trees, close to the bark surface. The ants maintain within these galleries populations of different species of armoured scale insects. A review is presented on the geographical distribution of mutualism, of the Melissotarsus species, the associated 10 species of armoured scale insects, and the host plants on which the mutualism takes place. The ecology of the mutualism is discussed also, together with suggestions on the benefits that the partners gain from the associations

    Order Parameter Description of the Anderson-Mott Transition

    Full text link
    An order parameter description of the Anderson-Mott transition (AMT) is given. We first derive an order parameter field theory for the AMT, and then present a mean-field solution. It is shown that the mean-field critical exponents are exact above the upper critical dimension. Renormalization group methods are then used to show that a random-field like term is generated under renormalization. This leads to similarities between the AMT and random-field magnets, and to an upper critical dimension dc+=6d_{c}^{+}=6 for the AMT. For d<6d<6, an ϵ=6d\epsilon = 6-d expansion is used to calculate the critical exponents. To first order in ϵ\epsilon they are found to coincide with the exponents for the random-field Ising model. We then discuss a general scaling theory for the AMT. Some well established scaling relations, such as Wegner's scaling law, are found to be modified due to random-field effects. New experiments are proposed to test for random-field aspects of the AMT.Comment: 28pp., REVTeX, no figure

    Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    Full text link

    Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis paper reports on a validation study of CFD models used to predict the effect of PCM clay boards on the control of indoor environments, in ventilated and non-ventilated situations. Unlike multi-zonal models, CFD is important in situations where localised properties are essential such as in buildings with complex and large geometries. The employed phase change model considers temperature/enthalpy hysteresis and varying enthalpy-temperature characteristics to more accurately simulate the phase change behaviour of the PCM boards compared to the standard default modelling approach in the commercial CFD codes. Successful validation was obtained with a mean error of 1.0 K relative to experimental data, and the results show that in addition to providing satisfactory quantitative results, CFD also provides qualitative results which are useful in the effective design of indoor thermal environment control systems utilising PCM. These results include: i) temperature and air flow distribution within the space resulting from the use of PCM boards and different night ventilation rates; ii) the fraction of PCM experiencing phase change and is effective in the control of the indoor thermal environment, enabling optimisation of the location of the boards; and iii) the energy impact of PCM boards and adequate ventilation configurations for effective night charging.This work was funded through sponsorship from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No: EP/H004181/1

    Superconducting ``metals'' and ``insulators''

    Full text link
    We propose a characterization of zero temperature phases in disordered superconductors on the basis of the nature of quasiparticle transport. In three dimensional systems, there are two distinct phases in close analogy to the distinction between normal metals and insulators: the superconducting "metal" with delocalized quasiparticle excitations and the superconducting "insulator" with localized quasiparticles. We describe experimental realizations of either phase, and study their general properties theoretically. We suggest experiments where it should be possible to tune from one superconducting phase to the other, thereby probing a novel "metal-insulator" transition inside a superconductor. We point out various implications of our results for the phase transitions where the superconductor is destroyed at zero temperature to form either a normal metal or a normal insulator.Comment: 18 page

    Parametric pumping at finite frequency

    Get PDF
    We report on a first principles theory for analyzing the parametric electron pump at a finite frequency. The pump is controlled by two pumping parameters with phase difference ϕ\phi. In the zero frequency limit, our theory predicts the well known result that the pumped current is proportional to sinϕ\sin\phi. For the more general situation of a finite frequency, our theory predicts a non-vanishing pumped current even when the two driving forces are in phase, in agreement with the recent experimental results. We present the physical mechanism behind the nonzero pumped current at ϕ=0\phi=0, which we found to be due to photon-assisted processes

    Properties of spin-triplet, even-parity superconductors

    Full text link
    The physical consequences of the spin-triplet, even-parity pairing that has been predicted to exist in disordered two-dimensional electron systems are considered in detail. We show that the presence of an attractive interaction in the particle-particle spin-triplet channel leads to an instability of the normal metal that competes with the localizing effects of the disorder. The instability is characterized by a diverging length scale, and has all of the characteristics of a continuous phase transition. The transition and the properties of the ordered phase are studied in mean-field theory, and by taking into account Gaussian fluctuations. We find that the ordered phase is indeed a superconductor with an ordinary Meissner effect and a free energy that is lower than that of the normal metal. Various technical points that have given rise to confusion in connection with this and other manifestations of odd-gap superconductivity are also discussed.Comment: 15 pp., REVTeX, psfig, 2 ps figs, final version as publishe

    Universality of the critical conductance distribution in various dimensions

    Full text link
    We study numerically the metal - insulator transition in the Anderson model on various lattices with dimension 2<d42 < d \le 4 (bifractals and Euclidian lattices). The critical exponent ν\nu and the critical conductance distribution are calculated. We confirm that ν\nu depends only on the {\it spectral} dimension. The other parameters - critical disorder, critical conductance distribution and conductance cummulants - depend also on lattice topology. Thus only qualitative comparison with theoretical formulae for dimension dependence of the cummulants is possible

    Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions

    Full text link
    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the non-interacting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but non-zero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency, ω\omega, and temperature, TT, is determined by the scaling variable ω/Tp\omega/T^p (where pp is the exponent for the temperature dependence of the inelastic scattering rate) and not by ω/T\omega/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent, pp, and the thermal exponent, zTz_T, in terms of the scaling dimension, α<0-\alpha < 0, of the interaction strength and the dynamical exponent zz (which has the value z=2z=2), obtaining p=1+2α/zp=1+2\alpha/z and zT=2/pz_T=2/p.Comment: 9 pages, 4 figures, submitted to Physical Review

    Random Mass Dirac Fermions in Doped Spin-Peierls and Spin-Ladder systems: One-Particle Properties and Boundary Effects

    Full text link
    Quasi-one-dimensional spin-Peierls and spin-ladder systems are characterized by a gap in the spin-excitation spectrum, which can be modeled at low energies by that of Dirac fermions with a mass. In the presence of disorder these systems can still be described by a Dirac fermion model, but with a random mass. Some peculiar properties, like the Dyson singularity in the density of states, are well known and attributed to creation of low-energy states due to the disorder. We take one step further and study single-particle correlations by means of Berezinskii's diagram technique. We find that, at low energy ϵ\epsilon, the single-particle Green function decays in real space like G(x,ϵ)(1/x)3/2G(x,\epsilon) \propto (1/x)^{3/2}. It follows that at these energies the correlations in the disordered system are strong -- even stronger than in the pure system without the gap. Additionally, we study the effects of boundaries on the local density of states. We find that the latter is logarithmically (in the energy) enhanced close to the boundary. This enhancement decays into the bulk as 1/x1/\sqrt{x} and the density of states saturates to its bulk value on the scale Lϵln2(1/ϵ)L_\epsilon \propto \ln^2 (1/\epsilon). This scale is different from the Thouless localization length λϵln(1/ϵ)\lambda_\epsilon\propto\ln (1/\epsilon). We also discuss some implications of these results for the spin systems and their relation to the investigations based on real-space renormalization group approach.Comment: 26 pages, LaTex, 9 PS figures include
    corecore