4,446 research outputs found
Solution of two-center time-dependent Dirac equation in spherical coordinates: Application of the multipole expansion of the electron-nuclei interaction
A non-perturbative approach to the solution of the time-dependent, two-center
Dirac equation is presented with a special emphasis on the proper treatment of
the potential of the nuclei. In order to account for the full multipole
expansion of this potential, we express eigenfunctions of the two-center
Hamiltonian in terms of well-known solutions of the "monopole" problem that
employs solely the spherically-symmetric part of the interaction. When combined
with the coupled-channel method, such a wavefunction-expansion technique allows
for an accurate description of the electron dynamics in the field of moving
ions for a wide range of internuclear distances. To illustrate the
applicability of the proposed approach, the probabilities of the K- as well as
L- shell ionization of hydrogen-like ions in the course of nuclear alpha-decay
and slow ion-ion collisions have been calculated
Evidence against correlations between nuclear decay rates and Earth-Sun distance
We have reexamined our previously published data to search for evidence of
correlations between the rates for the alpha, beta-minus, beta-plus, and
electron-capture decays of 22Na, 44Ti, 108Agm, 121Snm, 133Ba, and 241Am and the
Earth-Sun distance. We find no evidence for such correlations and set limits on
the possible amplitudes of such correlations substantially smaller than those
observed in previous experiments
Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei
An algebraic sp(4) shell model is introduced to achieve a deeper
understanding and interpretation of the properties of pairing-governed 0+
states in medium mass atomic nuclei. The theory, which embodies the simplicity
of a dynamical symmetry approach to nuclear structure, is shown to reproduce
the excitation spectra and fine structure effects driven by proton-neutron
interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure
Development of space-syaple thermal-control coatings triannual report, jan. 20 - may 20, 1965
Development of stable thermal control coatings with low solar absorptance to infrared emittance rati
Ground state magnetic dipole moment of 35K
The ground state magnetic moment of 35K has been measured using the technique
of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K
nuclei were produced following the reaction of a 36Ar primary beam of energy
150 MeV/nucleon incident on a Be target. The spin polarization of the 35K
nuclei produced at 2 degrees relative to the normal primary beam axis was
confirmed. Together with the mirror nucleus 35S, the measurement represents the
heaviest T = 3/2 mirror pair for which the spin expectation value has been
obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2
known mirror moments and the slope and intercept are consistent with the
previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure
Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments
Spin-dependent WIMP searches have traditionally presented results within an
odd group approximation and by suppressing one of the spin-dependent
interaction cross sections. We here elaborate on a model-independent analysis
in which spin-dependent interactions with both protons and neutrons are
simultaneously considered. Within this approach, equivalent current limits on
the WIMP-nucleon interaction at WIMP mass of 50 GeV/c are either
pb, pb or ,
depending on the choice of cross section or coupling strength
representation. These limits become less restrictive for either larger or
smaller masses; they are less restrictive than those from the traditional odd
group approximation regardless of WIMP mass. Combination of experimental
results are seen to produce significantly more restrictive limits than those
obtained from any single experiment. Experiments traditionally considered
spin-independent are moreover found to severely limit the spin-dependent phase
space. The extension of this analysis to the case of positive signal
experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.
Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence
At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark
matter searches has been limited to the spin-dependent sector, owing to the
general use of fluorinated refrigerants which have high spin sensitivity. Given
their recent demonstration of a significant constraint capability with
relatively small exposures and the relative economy of the technique, we
consider the potential impact of heavy versions of such devices on the
spin-independent sector. Limits obtainable from a -loaded SDD
are estimated on the basis of the radiopurity levels and backgrounds already
achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure,
equivalent to the current CDMS, such a device may already probe to below
10 pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.
Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier
In order to describe heavy-ion fusion reactions around the Coulomb barrier
with an actinide target nucleus, we propose a model which combines the
coupled-channels approach and a fluctuation-dissipation model for dynamical
calculations. This model takes into account couplings to the collective states
of the interacting nuclei in the penetration of the Coulomb barrier and the
subsequent dynamical evolution of a nuclear shape from the contact
configuration. In the fluctuation-dissipation model with a Langevin equation,
the effect of nuclear orientation at the initial impact on the prolately
deformed target nucleus is considered. Fusion-fission, quasi-fission and deep
quasi-fission are separated as different Langevin trajectories on the potential
energy surface. Using this model, we analyze the experimental data for the mass
distribution of fission fragments (MDFF) in the reactions of
S+U and Si+U at several incident energies
around the Coulomb barrier. We find that the time scale in the quasi-fission as
well as the deformation of fission fragments at the scission point are
different between the Si+U and S+U systems,
causing different mass asymmetries of the quasi-fission.Comment: 11 figure
Phenomenological description of the states and in some even-even nuclei
A sixth-order quadrupole boson Hamiltonian is used to describe the states
and identified in several nuclei by various types of experiments.
Two alternative descriptions of energy levels are proposed. One corresponds to
a semi-classical approach of the model Hamiltonian while the other one provides
the exact eigenvalues. Both procedures yield close formulas for energies. The
first procedure involves four parameters, while the second involves a compact
formula with five parameters. In each case the parameters are fixed by a
least-square fit procedure. Applications are performed for eight even-even
nuclei.
Both methods yield results which are in a surprisingly good agreement with
the experimental data. We give also our predicted reduced transition
probabilities within the two approaches, although the corresponding
experimental data are not yet available.Comment: 27pages, 18 figure
- …
