170 research outputs found

    Removal of an Azo Textile Dye from Wastewater by Cyclodextrin-Epichlorohydrin Polymers

    Get PDF
    Native cyclodextrins (CDs), α-, β- and γ-CDs, were employed to synthetise three different cyclodextrin-based polymers using epichlorohydrin (EPI) as a cross-linker. These polymers were applied as adsorbent material to remove an azo textile dye, Direct Blue 78 (DB78), from water. The formation of inclusion complexes between the alone CDs and DB78 molecules were first studied in aqueous solutions. Then, adsorption experiments of the dye were performed by means of cyclodextrin/epichlorohydrin (CD/EPI) polymers. The effects of various parameters, such as contact time, adsorbent dosage, initial dye concentration, pH and temperature, were examined to determine the better adsorption conditions. The equilibrium isotherms and the adsorption kinetics were also analysed using opportune mathematic models. The chemical-physical characteristics and the morphology of the adsorbent polymers were, respectively, observed by differential scanning calorimetry and field emission scanning electron microscope. The CD/EPI polymers showed a very good ability in the removal of DB78 from aqueous solution; indeed, the maximum efficiencies in the dye removal were found to be about 99% for β-CD/EPI polymer and about 97% for γ-CD/EPI polymer, at pH 6 and 25°C conditions. It is possible to assume that the good adsorbent aptitude of CD/EPI polymers is due to their double peculiarity to include the dye in the inner cavity of CDs and to adsorb the dye on their porous surfaces by physical interaction

    Molecular interactions, characterization and photoactivity of Chlorophyll a/chitosan/2-HP-β-cyclodextrin composite films as functional and active surfaces for ROS production

    Get PDF
    Novel photosensitizing film based on the natural hybrid polymer Chitosan/2-hydroxy-propyl-β-Cyclodextrin (CH/CD) is synthesized introducing Chlorophyll a (CH/CD/Chla) as a photoactive agent for possible application in antimicrobial photodynamic therapy (PDT). The polymer absorbs visible light, in turn able to generate reactive oxygen species (ROS) and, therefore it can be used as environmental friendly and biodegradable polymeric photosensitizer (PS). The modified film is characterized by means of different spectroscopic, calorimetric, diffraction techniques and microscopic imaging methods including time-resolved absorption spectroscopy. UV–Vis, FTIR-ATR and X-ray Photoelectron Spectroscopy (XPS) analyses suggest that Chla shows a strong affinity toward Chitosan introducing interactions with amino groups present on the polymer chains. Nanosecond laser flash photolysis technique provides evidence for the population of the excited triplet state of Chla. Photogeneration of singlet oxygen is demonstrated by both direct detection by using infrared luminescence spectroscopy and chemical methods based on the use of suitable traps. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Differential Scanning Calorimetry (DSC) analyses confirm also the occurrence of structural changes both on the film surface and within the film layer induced by the insertion of the pigment. Moreover, X-ray Diffraction data (XRD) shows the existence of an amorphous phase for the chitosan films in all the compared conditions

    Sostanze e trasformazioni

    Get PDF

    Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials

    Get PDF
    Multifunctionalized biomaterials with enhanced bone antiresorptive properties were obtained through adsorption of a bisphosphonate, risedronate, on hydroxyapatite (HA) nanocrystals functionalized with zinc ions and polyethylenimine (PEI). Zn incorporation into the HA structure amounts to about 8 atom %, whereas the PEI content of the bifunctionalized material ZnHAPEIBP is about 5.9 wt %. The mechanism of adsorption and release of the bisphosphonate on ZnHAPEI is compared with that on ZnHA: risedronate adsorption isotherm on ZnHA is a Langmuir type, whereas the isotherm of adsorption on ZnHAPEI is better fitted with a Freundlich model and involved a higher amount of adsorbed risedronate. In vitro cell tests were carried out with a coculture model of osteoblasts and osteoclasts using a model simulating oxidative stress and consequent cellular senescence and osteoporosis by the addition of H2O2. The conditions utilized in the coculture model strongly affect osteoblast behavior. The results show that the composite materials allow an increase in osteoblast viability and recover impairment, revealing a novel characteristic of risedronate that is able to counteract the negative effects of oxidative stress when associated with differently functionalized samples. Both PEI and the bisphosphonate reduce osteoclast viability. Moreover, PEI, and even more risedronate, exerts an inhibitory effect on osteoclast activity

    Eudragit s100 entrapped liposome for curcumin delivery: Anti-oxidative effect in Caco-2 cells

    Get PDF
    Curcumin is a natural polyphenol with strong antioxidant activity. However, this molecule shows a very poor bioavailability, instability, and rapid metabolism in vivo. In this work curcumin was loaded in Eudragit-coated liposomes to create a gastroresistant carrier, able to protect its load from degradation and free it at the site of absorption in the colon region. Small unilamellar vesicles were prepared and coated with Eudragit by a pH-driven method. The physico-chemical properties of the prepared systems were assessed by light scattering, transmission electron microscopy, infrared spectroscopy, and differential scanning calorimetry. The uptake of vesicles by Caco-2 cells and the anti-oxidant activity in cells were evaluated. The produced vesicles showed dimensions of about forty nanometers that after covering with Eudragit resulted to have micrometric dimensions at acid pH. The experiments showed that at pH > 7.0 the polymeric coating dissolves, releasing the nanometric liposomes and allowing them to enter Caco-2 cells. Delivered curcumin loaded vesicles were then able to decrease significantly ROS levels as induced by H2O2 in Caco-2 cells. The proposed work showed the possibility of realizing effective gastroresistant curcumin liposome formulations for the delivery of antioxidant molecules to Caco-2 cells, potentially applicable to the treatment of pathological conditions related to intestinal oxidative stress. View Full-Tex

    The synergistic action of cyclodextrin-based adsorbent and advanced oxidation processes for sulfamethoxazole removal from water

    Get PDF
    In this work, the removal of sulfamethoxazole from water was studied by adsorption on a cyclodextrin–epichlorohydrin copolymer and through Advanced Oxidation Processes. The adsorption was efficient and fast, requiring only 10 min to reach the equilibrium; it was also highly favored, with adsorption efficiency higher than 80%, at slightly acidic pH and at room temperature. The desorption of sulfamethoxazole was obtained by raising the temperature to 80 °C. The regenerated polymer has been reused multiple times without any loss in performance, allowing a reduction in costs associated with the process. As an alternative method to regenerate the adsorbent material, the photodegradation of sulfamethoxazole adsorbed on the polymer alone and in the presence of TiO2 as a catalyst through continuous irradiation with UV light and Pulsed Light was attempted and studied. For this purpose, polymeric adsorbents containing different amounts of TiO2 were synthesized and tested. The Pulsed Light showed the highest efficiency since it allowed the complete removal of sulfamethoxazole, regardless of the presence of TiO2 which, however, reduces adsorption efficiency of the material. Furthermore, a qualitative assessment of formed pulsed light by-products was also attempted. The remains of SMX in solution were decomposed by Pulsed Light technology and the effect of the presence of hydrogen peroxide on the photodegradation process was also studied. Despite the presence of by-products after Advanced Oxidation Processes, the procedure proposed in this work is effective and easy to apply to water treatment plants, thanks to the use of environmental-friendly adsorbents and light sources

    Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine

    Get PDF
    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content = 8.2 wt%) and αTCPdAg5 (silver content = 4.7 wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria

    Lights and shadows concerning platelet products for musculoskeletal regeneration.

    Get PDF
    Various types of platelet (PLT) products, such as Platelet Rich Plasma (PRP) and Platelet Gel (PG), derived from autologous peripheral blood, have been used for tissue repair. The good clinical outcomes, due mainly to their safety and Growth Factor (GF) content, have led to a wide use of PLT products in many fields of medicine. However, until now the existing literature adds controversies to the use of PLT concentrates. When talking about PLTs and their products, a great number of variables have to be considered. These variables are mainly related to PRP preparation methods, the type of activators, intra- and inter-species variability, types of pathology to be treated, the ways and times of administration and the association of PRP or PG with other treatments. This review considers and discusses these causes of variability with particular attention to orthopaedic implications. The possibility of improving the knowledge on variables affecting therapeutic efficacy will surely help in addressing the best combination of factors implied in the different steps of PLT concentrate preparation and use
    • …
    corecore