11,980 research outputs found
Energy in Yang-Mills on a Riemann Surface
Sengupta's lower bound for the Yang-Mills action on smooth connections on a
bundle over a Riemann surface generalizes to the space of connections whose
action is finite. In this larger space the inequality can always be saturated.
The Yang-Mills critical sets correspond to critical sets of the energy action
on a space of paths. This may shed light on Atiyah and Bott's conjecture
concerning Morse theory for the space of connections modulo gauge
transformations.Comment: 7 pages, 2 figures, Latex2e with epsfig, submitted to Journal of
Mathematical Physic
On asymptotically optimal tests under loss of identifiability in semiparametric models
We consider tests of hypotheses when the parameters are not identifiable
under the null in semiparametric models, where regularity conditions for
profile likelihood theory fail. Exponential average tests based on integrated
profile likelihood are constructed and shown to be asymptotically optimal under
a weighted average power criterion with respect to a prior on the
nonidentifiable aspect of the model. These results extend existing results for
parametric models, which involve more restrictive assumptions on the form of
the alternative than do our results. Moreover, the proposed tests accommodate
models with infinite dimensional nuisance parameters which either may not be
identifiable or may not be estimable at the usual parametric rate. Examples
include tests of the presence of a change-point in the Cox model with current
status data and tests of regression parameters in odds-rate models with right
censored data. Optimal tests have not previously been studied for these
scenarios. We study the asymptotic distribution of the proposed tests under the
null, fixed contiguous alternatives and random contiguous alternatives. We also
propose a weighted bootstrap procedure for computing the critical values of the
test statistics. The optimal tests perform well in simulation studies, where
they may exhibit improved power over alternative tests.Comment: Published in at http://dx.doi.org/10.1214/08-AOS643 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Protecting Intellectual Capital in the New Century: Are Universities Prepared?
In recent years, intellectual property has become increasingly important to academic institutions throughout the United States. As universities rely more heavily on trademarks and patents for additional revenue, questions arise as to whether these institutions are sufficiently protected by their current intellectual property policies. This iBrief explores the policies promulgated by a variety of academic institutions and assesses whether these universities are adequately protected by their policies
Robust Inference for Univariate Proportional Hazards Frailty Regression Models
We consider a class of semiparametric regression models which are
one-parameter extensions of the Cox [J. Roy. Statist. Soc. Ser. B 34 (1972)
187-220] model for right-censored univariate failure times. These models assume
that the hazard given the covariates and a random frailty unique to each
individual has the proportional hazards form multiplied by the frailty.
The frailty is assumed to have mean 1 within a known one-parameter family of
distributions. Inference is based on a nonparametric likelihood. The behavior
of the likelihood maximizer is studied under general conditions where the
fitted model may be misspecified. The joint estimator of the regression and
frailty parameters as well as the baseline hazard is shown to be uniformly
consistent for the pseudo-value maximizing the asymptotic limit of the
likelihood. Appropriately standardized, the estimator converges weakly to a
Gaussian process. When the model is correctly specified, the procedure is
semiparametric efficient, achieving the semiparametric information bound for
all parameter components. It is also proved that the bootstrap gives valid
inferences for all parameters, even under misspecification.
We demonstrate analytically the importance of the robust inference in several
examples. In a randomized clinical trial, a valid test of the treatment effect
is possible when other prognostic factors and the frailty distribution are both
misspecified. Under certain conditions on the covariates, the ratios of the
regression parameters are still identifiable. The practical utility of the
procedure is illustrated on a non-Hodgkin's lymphoma dataset.Comment: Published by the Institute of Mathematical Statistics
(http://www.imstat.org) in the Annals of Statistics
(http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000053
- …