We consider tests of hypotheses when the parameters are not identifiable
under the null in semiparametric models, where regularity conditions for
profile likelihood theory fail. Exponential average tests based on integrated
profile likelihood are constructed and shown to be asymptotically optimal under
a weighted average power criterion with respect to a prior on the
nonidentifiable aspect of the model. These results extend existing results for
parametric models, which involve more restrictive assumptions on the form of
the alternative than do our results. Moreover, the proposed tests accommodate
models with infinite dimensional nuisance parameters which either may not be
identifiable or may not be estimable at the usual parametric rate. Examples
include tests of the presence of a change-point in the Cox model with current
status data and tests of regression parameters in odds-rate models with right
censored data. Optimal tests have not previously been studied for these
scenarios. We study the asymptotic distribution of the proposed tests under the
null, fixed contiguous alternatives and random contiguous alternatives. We also
propose a weighted bootstrap procedure for computing the critical values of the
test statistics. The optimal tests perform well in simulation studies, where
they may exhibit improved power over alternative tests.Comment: Published in at http://dx.doi.org/10.1214/08-AOS643 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org