8,799 research outputs found

    Myelin figures: the buckling and flow of wet soap

    Full text link
    Myelin figures are interfacial structures formed when certain surfactants swell in excess water. Here, I present data and model calculations suggesting myelin formation and growth is due to the fluid flow of surfactant, driven by the hydration gradient at the dry surfactant/water interface; a simple model based on this idea qualitatively reproduces the various myelin growth behaviors observed in different experiments. From a detailed experimental observation of how myelins develop from a planar precursor structure, I identify a mechanical instability that may underlie myelin formation. These results indicate the mixed mechanical character of the surfactant lamellar structure, where fluid and elastic properties coexist, is what enables the formation and growth of myelins.Comment: 11 pages, 10 figures, to appear in Phys. Rev. E. Corrected figures/typo

    Environmental Epidemiology of Intestinal Schistosomiasis in Uganda: Population Dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with Observations on Natural Infections with Digenetic Trematodes

    Get PDF
    This study documented the population dynamics of Biomphalaria and associated natural infections with digenetic trematodes, along the shores of Lake Albert and Lake Victoria, recording local physicochemical factors. Over a two-and-a-half-year study period with monthly sampling, physicochemical factors were measured at 12 survey sites and all freshwater snails were collected. Retained Biomphalaria were subsequently monitored in laboratory aquaria for shedding trematode cercariae, which were classified as either human infective (Schistosoma mansoni) or nonhuman infective. The population dynamics of Biomphalaria differed by location and by lake and had positive relationship with pH (P < 0.001) in both lakes and negative relationship with conductivity (P = 0.04) in Lake Albert. Of the Biomphalaria collected in Lake Albert (N = 6,183), 8.9% were infected with digenetic trematodes of which 15.8% were shedding S. mansoni cercariae and 84.2% with nonhuman infective cercariae. In Lake Victoria, 2.1% of collected Biomphalaria (N = 13,172) were infected with digenetic trematodes with 13.9% shedding S. mansoni cercariae, 85.7% shedding nonhuman infective cercariae, and 0.4% of infected snails shedding both types of cercariae. Upon morphological identification, species of Biomphalaria infected included B. sudanica, B. pfeifferi, and B. stanleyi in Lake Albert and B. sudanica, B. pfeifferi, and B. choanomphala in Lake Victoria. The study found the physicochemical factors that influenced Biomphalaria population and infections. The number and extent of snails shedding S. mansoni cercariae illustrate the high risk of transmission within these lake settings. For better control of this disease, greater effort should be placed on reducing environmental contamination by improvement of local water sanitation and hygiene

    Spillover and diffraction sidelobe contamination in a double-shielded experiment for mapping Galactic synchrotron emission

    Get PDF
    We have analyzed observations from a radioastronomical experiment to survey the sky at decimetric wavelengths along with feed pattern measurements in order to account for the level of ground contamination entering the sidelobes. A major asset of the experiment is the use of a wire mesh fence around the rim-halo shielded antenna with the purpose of levelling out and reducing this source of stray radiation for zenith-centered 1-rpm circular scans. We investigate the shielding performance of the experiment by means of a geometric diffraction model in order to predict the level of the spillover and diffraction sidelobes in the direction of the ground. Using 408 MHz and 1465 MHz feed measurements, the model shows how a weakly-diffracting and unshielded antenna configuration becomes strongly-diffracting and double-shielded as far-field diffraction effects give way to near-field ones. Due to the asymmetric response of the feeds, the orientation of their radiation fields with respect to the secondary must be known a priori before comparing model predictions with observational data. By adjusting the attenuation coefficient of the wire mesh the model is able to reproduce the amount of differential ground pick-up observed during test measurements at 1465 MHz.Comment: 14 pages, 17 eps + 1 gif figures and 4 Tables. Accepted for publication in A&AS. Fig.7 available at full resolution from http://www.das.inpe.br/~tello/publications.ht

    New simple digital self-calibration technique for pipeline ADCs using the internal thermal noise

    Get PDF
    IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUAThis paper describes a new digital-domain selfcalibration technique for high-speed pipeline A/D converters using the internal thermal noise as input stimulus. This lowamplitude noise is amplified and recycled by the ADC itself and, due to the successive foldings, it is naturally converted into uniform noise. This noise is then used to calculate the required calibrating-codes. As an example, the calibration of a 13-bit pipeline ADC shows that the overall linearity can be significantly improved using this technique

    Models and Estimation for Phylogenetic Trees

    Get PDF
    In this thesis, we consider Markov models for matched sequences. De¯ne fij(t) = P(X(t) = i; Y (t) = jjX(0) = Y (0)); where fij is the joint probability that, for a given site, the ¯rst and second sequences have the values i and j at a given site, given that they were the same at time 0. This can generalized to several sequences. The sequences (taxa) are then arranged in an evolutionary tree (phylogenetic tree) depicting how taxa diverge from their common ancestors. We develop tests and estimation methods for the parameters of di®erent models. Standard phylogenetic methods assume stationarity, homogeneity and reversibility for the Markov processes, and often impose further restrictions on the parameters. The parameters in these cases are estimated using many popular packages, including PHYLIP and PAUP*. We describe a new and more general method for calculating the joint probability distribution under stationary and homogeneous models for the more general models with some weakening of the stationarity and homogeneity assumptions. We describe the method for a two edged tree and then extend it to the case for a K tipped tree. We discuss the case of a ¯ve edged tree for a set of bacterial sequences for which stationarity and homogeneity are not present. This data set is very similar to that of Galtier and Gouy (1995), and the search for methods appropriate for its analysis has provided the raison d'etre for this work. The extension we propose is to allow non-stationarity, so that from the root of the tree we permit di®erent Markov processes to operate along different descendant lineages; furthermore, we permit non-homogeneous Markov processes to operate across the tree. We obtain methods tha
    corecore