9,707 research outputs found

    Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone

    Get PDF
    The present work focuses on the physicochemical characterization of selected mineral-based biomaterials that are frequently used in dental applications. The selected materials are commercially available as granules from different biological origins: bovine, porcine, and coralline. Natural and calcined human bone were used for comparison purposes. Besides a classical rationalization of chemical composition and crystallinity, a major emphasis was placed on the measurement of various morphostructural properties such as particle size, porosity, density, and specific surface area. Such properties are crucial to acquiring a full interpretation of the in vivo performance. The studied samples exhibited distinct particle sizes (between 200 and 1000 microm) and shapes. Mercury intrusion revealed not only that the total sample porosity varied considerably (33% for OsteoBiol, 50% for PepGen P-15, and 60% for BioOss) but also that a significant percentage of that porosity corresponded to submicron pores. Biocoral was not analyzed by this technique as it possesses larger pores than those of the porosimeter upper limit. The density values determined for the calcined samples were close to the theoretical values of hydroxyapatite. However, the values for the collagenated samples were lower, in accordance with their lower mineral content. The specific surface areas ranged from less than 1 m(2)/g (Biocoral) up to 60 m(2)/g (BioOss). The chemical and phase composition of most of the samples, the exception being Biocoral (aragonite), were hydroxyapatite based. Nonetheless, the samples exhibited different organic material content as a consequence of the distinct heat treatments that each had received

    Influence of hydrochloric acid concentration on the demineralization of cortical bone

    Get PDF
    Although demineralized bone matrix has been considered a successful grafting material, combining both osteoconductive and osteoinductive properties, conflicting results have been published in the literature regarding its bone-inducing abilities. This may be a consequence of following different demineralization procedures that naturally result in products with different properties. The present work examines the evaluation of the demineralization process of similar samples of human cortical bone using three different concentrations of hydrochloric acid solutions (0.6 M, 1.2 M and 2.4 M). Sample calcium content was determined (by Atomic Absorption Spectroscopy) at various immersion times, allowing the construction of the corresponding kinetic profiles. Phase and chemical composition were enabled by X-Ray Diffraction Spectroscopy and Fourier Transform Infrared Analysis, respectively. Structural modifications were followed by Light and Scanning Electron Microscopy and quantified by mercury porosimetry (in terms of porosity and pore size distribution). As expected, increasing the acid concentration led to an increase in the demineralization rate, but not in a proportional way. However, one of the most significant effects of the acid concentration was found on the sample structural features. In fact, a considerable increment in porosity was detected for the sample subjected to the highest hydrochloric acid concentration. Microscopic observations demonstrated that despite the structural deformation resultant from demineralization, the basic microstructure was preserved

    Spillover and diffraction sidelobe contamination in a double-shielded experiment for mapping Galactic synchrotron emission

    Get PDF
    We have analyzed observations from a radioastronomical experiment to survey the sky at decimetric wavelengths along with feed pattern measurements in order to account for the level of ground contamination entering the sidelobes. A major asset of the experiment is the use of a wire mesh fence around the rim-halo shielded antenna with the purpose of levelling out and reducing this source of stray radiation for zenith-centered 1-rpm circular scans. We investigate the shielding performance of the experiment by means of a geometric diffraction model in order to predict the level of the spillover and diffraction sidelobes in the direction of the ground. Using 408 MHz and 1465 MHz feed measurements, the model shows how a weakly-diffracting and unshielded antenna configuration becomes strongly-diffracting and double-shielded as far-field diffraction effects give way to near-field ones. Due to the asymmetric response of the feeds, the orientation of their radiation fields with respect to the secondary must be known a priori before comparing model predictions with observational data. By adjusting the attenuation coefficient of the wire mesh the model is able to reproduce the amount of differential ground pick-up observed during test measurements at 1465 MHz.Comment: 14 pages, 17 eps + 1 gif figures and 4 Tables. Accepted for publication in A&AS. Fig.7 available at full resolution from http://www.das.inpe.br/~tello/publications.ht

    Foeniculum vulgare Essential Oils: Chemical Composition, Antioxidant and Antimicrobial Activities

    Get PDF
    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, I h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity >50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.info:eu-repo/semantics/publishedVersio

    Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review

    Get PDF
    \ua9 2024, The Author(s). This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research

    Evaluating structural differences in cortical bone tissue after demineralization and calcination

    Get PDF
    Although the best results in bone grafting have been achieved with autogeneuos bone tissue, allografts and xenografts have been widely used either in mineralized, demineralized, or calcined forms. Demineralized bone has been proven to stimulate new bone formation by exposing, proteins and growth factors necessary for osteoinduction. On the other hand, calcined bone offers a natural architectural mineralized matrix, not present in synthetic apatite materials, as well as an excellent source of calcium. Despite the extensive use and importance of these materials, systematic works regarding their characterization are relatively scarce

    Comparative study of cellulose fragmentation by enzymes and ultrasound

    Get PDF
    The stability in aqueous suspensions of two particulate celluloses, Sigmacell type 100 and Avicel PH101, was analyzed. The effect of the presence of a cellulase from Trichodenna reesei, ionic strength, and ultrasonic agitation on the fragmentation/aggregation phenomena was studied. Particle size distributions of the powders were obtained with three different particle sizers: the Galai CIS 100, the Coulter Multisizer II, and the Malvem 2600c. The differences in the obtained absolute values are discussed according to the measuring principles of each technique; however, the overall conclusions are independent of the particle sizer used. The enzyme breaks up the Avicel aggregates more effectively than ultrasound while the Sigmacell particles are stable under the present experimental conditions. The stabilizing effect of cellulases was tentatively explained using the DLVO (Derjaguin, Landau, Verweye, and Overbeek) theory. The adsorbed enzyme did not change significantly the zeta potential of the fibers; hence, the stabilizing effect was attributed to a reduction in the attractive van der Waals forces and hydration effects

    Discrepancies in Determinations of the Ginzburg-Landau Parameter

    Full text link
    Long-standing discrepancies within determinations of the Ginzburg-Landau parameter κ\kappa from supercritical field measurements on superconducting microspheres are reexamined. The discrepancy in tin is shown to result from differing methods of analyses, whereas the discrepancy in indium is a consequence of significantly differing experimental results. The reanalyses however confirms the lower κ\kappa determinations to within experimental uncertainties.Comment: submitted to Phys. Rev.
    corecore