25,307 research outputs found

    Daubert\u27s Significance

    Get PDF
    The authors review and note the limited reach of Daubert v. Merrell Dow Pharmaceuticals. They also address its implications for concerned non-lawyers

    The V<sub>H</sub> gene repertoire of splenic B cells and somatic hypermutation in systemic lupus erythematosus

    Get PDF
    In systemic lupus erythematosus (SLE) it has been hypothesized that self-reactive B cells arise from virgin B cells that express low-affinity, nonpathogenic germline V genes that are cross-reactive for self and microbial antigens, which convert to high-affinity autoantibodies via somatic hypermutation. The aim of the present study was to determine whether the V&lt;sub&gt;H&lt;/sub&gt; family repertoire and pattern of somatic hypermutation in germinal centre (GC) B cells deviates from normal in SLE. Rearranged immunoglobulin V&lt;sub&gt;H&lt;/sub&gt; genes were cloned and sequenced from GCs of a SLE patient's spleen. From these data the GC V gene repertoire and the pattern of somatic mutation during the proliferation of B-cell clones were determined. The results highlighted a bias in V&lt;sub&gt;H&lt;/sub&gt;5 gene family usage, previously unreported in SLE, and under-representation of the V&lt;sub&gt;H&lt;/sub&gt;1 family, which is expressed in 20–30% of IgM+ B cells of healthy adults and confirmed a defect in negative selection. This is the first study of the splenic GC response in human SLE

    Interaction of a Modulated Electron Beam with a Plasma

    Get PDF
    The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results

    The Indirect Limit on the Standard Model Higgs Boson Mass from the Precision FERMILAB, LEP and SLD Data

    Get PDF
    Standard Model fits are performed on the most recent leptonic and b quark Z decay data from LEP and SLD, and FERMILAB data on top quark production, to obtain mtm_t and mHm_H. Poor fits are obtained, with confidence levels ≃\simeq 2%. Removing the b quark data improves markedly the quality of the fits and reduces the 95% CL upper limit on mHm_H by ≃\simeq 50 GeV.Comment: 6 pages 3 tables i figur

    Simulation of a non-invasive charge detector for quantum cellular automata

    Full text link
    Information in a Quantum Cellular Automata architecture is encoded in the polarizazion state of a cell, i.e., in the occupation numbers of the quantum dots of which the cell is made up. Non-invasive charge detectors of single electrons in a quantum dot are therefore needed, and recent experiments have shown that a quantum constriction electrostatically coupled to the quantum dot may be a viable solution. We have performed a numerical simulation of a system made of a quantum dot and a nearby quantum point contact defined, by means of depleting metal gates, in a two-dimensional electron gas at a GaAs/AlGaAs heterointerface. We have computed the occupancy of each dot and the resistance of the quantum wire as a function of the voltage applied to the plunger gate, and have derived design criteria for achieving optimal sensitivity.Comment: 8 pages, RevTeX, epsf, 5 figure

    Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses

    Get PDF
    Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii) the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.Rothamsted Research receives grant-aided support from the BBSRC of the UK. The authors thank Prof. David M. Shuker, University of Edinburgh, UK, who provided us with N. vitripennis. FGV was supported by a predoctoral fellowship SFRH/BD/22360/2005 from the ‘Fundac¸a˜o para a Cieˆncia e a Tecnologı´a’ (Portugal). This work was funded by grants BFU2007-62927 and BFU2010-15484 from the ‘Direccio´n General de Investigacio´n Cientı´fica y Te´cnica’ (Spain) to JR. JR was partially supported by ICREA Academia (Generalitat de Catalunya). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    On the symmetry breaking phenomenon

    Get PDF
    We investigate the problem of symmetry breaking in the framework of dynamical systems with symmetry on a smooth manifold. Two cases will be analyzed: general and Hamiltonian dynamical systems. We give sufficient conditions for symmetry breaking in both cases

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic
    • …
    corecore