56 research outputs found

    SPECT/CT imaging of the lumbar spine in chronic low back pain: a case report

    Get PDF
    Mechanical low back pain is a common indication for Nuclear Medicine imaging. Whole-body bone scan is a very sensitive but poorly specific study for the detection of metabolic bone abnormalities. The accurate localisation of metabolically active bone disease is often difficult in 2D imaging but single photon emission computed tomography/computed tomography (SPECT/CT) allows accurate diagnosis and anatomic localisation of osteoblastic and osteolytic lesions in 3D imaging. We present a clinical case of a patient referred for evaluation of chronic lower back pain with no history of trauma, spinal surgery, or cancer. Planar whole-body scan showed heterogeneous tracer uptake in the lumbar spine with intense localisation to the right lateral aspect of L3. Integrated SPECT/CT of the lumbar spine detected active bone metabolism in the right L3/L4 facet joint in the presence of minimal signs of degenerative osteoarthrosis on CT images, while a segment demonstrating more gross degenerative changes was more quiescent with only mild tracer uptake. The usefulness of integrated SPECT/CT for anatomical and functional assessment of back pain opens promising opportunities both for multi-disciplinary clinical assessment and treatment for manual therapists and for research into the effectiveness of manual therapies

    UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Get PDF
    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation

    Measuring the morphological characteristics of thoracolumbar fascia in ultrasound images: an inter-rater reliability study

    Get PDF
    BACKGROUND: Chronic lower back pain is still regarded as a poorly understood multifactorial condition. Recently, the thoracolumbar fascia complex has been found to be a contributing factor. Ultrasound imaging has shown that people with chronic lower back pain demonstrate both a significant decrease in shear strain, and a 25% increase in thickness of the thoracolumbar fascia. There is sparse data on whether medical practitioners agree on the level of disorganisation in ultrasound images of thoracolumbar fascia. The purpose of this study was to establish inter-rater reliability of the ranking of architectural disorganisation of thoracolumbar fascia on a scale from ‘very disorganised’ to ‘very organised’. METHODS: An exploratory analysis was performed using a fully crossed design of inter-rater reliability. Thirty observers were recruited, consisting of 21 medical doctors, 7 physiotherapists and 2 radiologists, with an average of 13.03 ± 9.6 years of clinical experience. All 30 observers independently rated the architectural disorganisation of the thoracolumbar fascia in 30 ultrasound scans, on a Likert-type scale with rankings from 1 = very disorganised to 10 = very organised. Internal consistency was assessed using Cronbach’s alpha. Krippendorff’s alpha was used to calculate the overall inter-rater reliability. RESULTS: The Krippendorf’s alpha was .61, indicating a modest degree of agreement between observers on the different morphologies of thoracolumbar fascia.The Cronbach’s alpha (0.98), indicated that there was a high degree of consistency between observers. Experience in ultrasound image analysis did not affect constancy between observers (Cronbach’s range between experienced and inexperienced raters: 0.95 and 0.96 respectively). CONCLUSIONS: Medical practitioners agree on morphological features such as levels of organisation and disorganisation in ultrasound images of thoracolumbar fascia, regardless of experience. Further analysis by an expert panel is required to develop specific classification criteria for thoracolumbar fascia

    The functional coupling of the deep abdominal and paraspinal muscles : the effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia

    No full text
    The thoracolumbar fascia (TLF) consists of aponeurotic and fascial layers that interweave the paraspinal and abdominal muscles into a complex matrix stabilizing the lumbosacral spine. To better understand low back pain, it is essential to appreciate how these muscles cooperate to influence lumbopelvic stability. This study tested the following hypotheses: (i) pressure within the TLF's paraspinal muscular compartment (PMC) alters load transfer between the TLF's posterior and middle layers (PLF and MLF); and (ii) with increased tension of the common tendon of the transversus abdominis (CTrA) and internal oblique muscles and incremental PMC pressure, fascial tension is primarily transferred to the PLF. In cadaveric axial sections, paraspinal muscles were replaced with inflatable tubes to simulate paraspinal muscle contraction. At each inflation increment, tension was created in the CTrA to simulate contraction of the deep abdominal muscles. Fluoroscopic images and load cells captured changes in the size, shape and tension of the PMC due to inflation, with and without tension to the CTrA. In the absence of PMC pressure, increasing tension on the CTrA resulted in anterior and lateral movement of the PMC. PMC inflation in the absence of tension to the CTrA resulted in a small increase in the PMC perimeter and a larger posterior displacement. Combining PMC inflation and tension to the CTrA resulted in an incremental increase in PLF tension without significantly altering tension in the MLF. Paraspinal muscle contraction leads to posterior displacement of the PLF. When expansion is combined with abdominal muscle contraction, the CTrA and internal oblique transfers tension almost exclusively to the PLF, thereby girdling the paraspinal muscles. The lateral border of the PMC is restrained from displacement to maintain integrity. Posterior movement of the PMC represents an increase of the PLF extension moment arm. Dysfunctional paraspinal muscles would reduce the posterior displacement of the PLF and increase the compliance of the lateral border. The resulting change in PMC geometry could diminish any effects of increased tension of the CTrA. This study reveals a co-dependent mechanism involving balanced tension between deep abdominal and lumbar spinal muscles, which are linked through the aponeurotic components of the TLF. This implies the existence of a point of equal tension between the paraspinal muscles and the transversus abdominis and internal oblique muscles, acting through the CTrA

    The thoracolumbar fascia : anatomy, function and clinical considerations

    No full text
    In this overview, new and existent material on the organization and composition of the thoracolumbar fascia (TLF) will be evaluated in respect to its anatomy, innervation biomechanics and clinical relevance. The integration of the passive connective tissues of the TLF and active muscular structures surrounding this structure are discussed, and the relevance of their mutual interactions in relation to low back and pelvic pain reviewed. The TLF is a girdling structure consisting of several aponeurotic and fascial layers that separates the paraspinal muscles from the muscles of the posterior abdominal wall. The superficial lamina of the posterior layer of the TLF (PLF) is dominated by the aponeuroses of the latissimus dorsi and the serratus posterior inferior. The deeper lamina of the PLF forms an encapsulating retinacular sheath around the paraspinal muscles. The middle layer of the TLF (MLF) appears to derive from an intermuscular septum that developmentally separates the epaxial from the hypaxial musculature. This septum forms during the fifth and sixth weeks of gestation. The paraspinal retinacular sheath (PRS) is in a key position to act as a hydraulic amplifier, assisting the paraspinal muscles in supporting the lumbosacral spine. This sheath forms a lumbar interfascial triangle (LIFT) with the MLF and PLF. Along the lateral border of the PRS, a raphe forms where the sheath meets the aponeurosis of the transversus abdominis. This lateral raphe is a thickened complex of dense connective tissue marked by the presence of the LIFT, and represents the junction of the hypaxial myofascial compartment (the abdominal muscles) with the paraspinal sheath of the epaxial muscles. The lateral raphe is in a position to distribute tension from the surrounding hypaxial and extremity muscles into the layers of the TLF. At the base of the lumbar spine all of the layers of the TLF fuse together into a thick composite that attaches firmly to the posterior superior iliac spine and the sacrotuberous ligament. This thoracolumbar composite (TLC) is in a position to assist in maintaining the integrity of the lower lumbar spine and the sacroiliac joint. The three-dimensional structure of the TLF and its caudally positioned composite will be analyzed in light of recent studies concerning the cellular organization of fascia, as well as its innervation. Finally, the concept of a TLC will be used to reassess biomechanical models of lumbopelvic stability, static posture and movement
    • …
    corecore