15 research outputs found

    Sex Determination:Why So Many Ways of Doing It?

    Get PDF
    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination

    B-chromosomes in two Brazilian populations of Dendropsophus nanus (Anura, Hylidae)

    No full text
    We report on the presence of B-chromosomes in two populations of Dendropsophus nanus (= Hyla nana Boulenger, 1889) from São Paulo State, Brazil. Such chromosomes were observed in 4 out of 43 specimens (9.3%) and in 9 out of 15 specimens (60%) from the municipalities of Nova Aliança and Botucatu, respectively. The karyotype 2n = 30 + 1B found in D. nanus was similar to that of other species with 2n = 30 chromosomes, except for the presence of an additional small telocentric chromosome. In one specimen from Botucatu, cells with one to three extra chromosomes were observed. These B-chromosomes appeared as univalent in meiosis I and did not bear a nucleolar organizer region or exhibit constitutive heterochromatin

    Male death resulting from hybridization between subspecies of the gypsy moth, Lymantria dispar

    No full text
    We explored the origin of all-female broods resulting from male death in a Hokkaido population of Lymantria dispar through genetic crosses based on the earlier experiments done by Goldschmidt and by testing for the presence of endosymbionts that are known to cause male killing in some insect species. The mitochondrial DNA haplotypes of the all-female broods in Hokkaido were different from those of normal Hokkaido females and were the same as those widely distributed in Asia, including Tokyo (TK). Goldschmidt obtained all-female broods through backcrossing, that is, F1 females obtained by a cross between TK females (L. dispar japonica) and Hokkaido males (L. dispar praeterea) mated with Hokkaido males. He also obtained all-male broods by mating Hokkaido females with TK males. Goldschmidt inferred that female- and male-determining factors were weakest in the Hokkaido subspecies and stronger in the Honshu (TK) subspecies. According to his theory, the females of all-female broods mated with Honshu males should produce normal sex-ratio broods, whereas weaker Hokkaido sexes would be expected to disappear in F1 or F2 generations after crossing with the Honshu subspecies. We confirmed both of Goldschmidt's results: in the case of all-female broods mated with Honshu males, normal sex-ratio broods were produced, but we obtained only all-female broods in the Goldschmidt backcross and obtained an all-male brood in the F1 generation of a Hokkaido female crossed with a TK male. We found no endosymbionts in all-female broods by 4,′6-diamidino-2-phenylindole (DAPI) staining. Therefore, the all-female broods observed in L. dispar are caused by some incompatibilities between Honshu and Hokkaido subspecies

    Maternal-offspring conflict leads to the evolution of dominant zygotic sex determination.

    No full text
    Sex determination in many species involves interactions among maternally expressed genes (eg, mRNA's and proteins placed into the egg) and zygotically expressed genes. Recent studies have proposed that conflicting selective pressures can occur between maternally and zygotically expressed sex determining loci and that these may play a role in shaping the evolution of sex determining systems. Here we show that such genetic conflict occurs under very general circumstances. Whenever sex ratio among progeny in a family affects the fitness of either progeny in that family or maternal fitness, then maternal-zygotic genetic conflict occurs. Furthermore, we show that this conflict typically results in a "positive feedback loop" that leads to the evolution of a dominant zygotic sex determining locus. When males more negatively effect fitness within the family, a male heterogametic (XY male) sex determining system evolves, whereas when females more negatively effect fitness in the family, a female heterogametic (ZW female) system evolves. Individuals with the dominant sex allele are one sex, and the opposite sex is determined by maternally-expressed genes in individuals without the dominant sex allele. Results therefore suggest that maternal-zygotic conflict could play a role in the early evolution of chromosomal sex determining systems. Predictions are made concerning the patterns of expression of maternal and zygotic sex determining genes expected to result from conflict over sex determination
    corecore