155 research outputs found
Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.
Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered
A Predator from East Africa that Chooses Malaria Vectors as Preferred Prey
BACKGROUND: All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae) that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. METHODOLOGY/PRINCIPAL FINDINGS: By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming) virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. CONCLUSIONS/SIGNIFICANCE: This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility
Efficacy and safety of a fixed dose artesunate-sulphamethoxypyrazine-pyrimethamine compared to artemether-lumefantrine for the treatment of uncomplicated falciparum malaria across Africa: a randomized multi-centre trial
<p>Abstract</p> <p>Background</p> <p>The efficacy of artemisinin-based combination therapy has already been demonstrated in a number of studies all over the world, and some of them can be regarded as comparably effective. Ease of administration of anti-malarial treatments with shorter courses and fewer tablets may be key determinant of compliance.</p> <p>Methods</p> <p>Patients with uncomplicated falciparum malaria and over six months of age were recruited in Cameroon, Mali, Rwanda and Sudan. 1,384 patients were randomly assigned to receive artesunate-sulphamethoxypyrazine-pyrimethamine (AS-SMP) three-day (once daily for 3 days) regimen (N = 476) or AS-SMP 24-hour (0 h, 12 h, 24 h) regimen (N = 458) or artemether-lumefantrine (AL), the regular 6 doses regimen (N = 450). The primary objective was to demonstrate non-inferiority (using a margin of -6%) of AS-SMP 24 hours or AS-SMP three days versus AL on the PCR-corrected 28-day cure rate.</p> <p>Results</p> <p>The PCR corrected 28-day cure rate on the intention to treat (ITT) analysis population were: 96.0%(457/476) in the AS-SMP three-day group, 93.7%(429/458) in the AS-SMP 24-hour group and 92.0%(414/450) in the AL group. Likewise, the cure rates on the PP analysis population were high: 99.3%(432/437) in the AS-SMP three-day group, 99.5%(416/419) in the AS-SMP 24-hour group and 99.7(391/394)% in the AL group. Most common drug-related adverse events were gastrointestinal symptoms (such as vomiting and diarrhea) which were slightly higher in the AS-SMP 24-hour group.</p> <p>Conclusion</p> <p>AS-SMP three days or AS-SMP 24 hours are safe, are as efficacious as AL, and are well tolerated.</p> <p>Trial registration</p> <p>NCT00484900 <url>http://www.clinicaltrials.gov</url>.</p
Normal-Mode-Analysis–Monitored Energy Minimization Procedure for Generating Small–Molecule Bound Conformations
The energy minimization of a small molecule alone does not automatically stop at a local minimum of the potential energy surface of the molecule if the minimum is shallow, thus leading to folding of the molecule and consequently hampering the generation of the bound conformation of a guest in the absence of its host. This questions the practicality of virtual screening methods that use conformations at local minima of their potential energy surfaces (local minimum conformations) as potential bound conformations. Here we report a normal-mode-analysis–monitored energy minimization (NEM) procedure that generates local minimum conformations as potential bound conformations. Of 22 selected guest–host complex crystal structures with guest structures possessing up to four rotatable bonds, all complexes were reproduced, with guest mass–weighted root mean square deviations of <1.0 Å, through docking with the NEM–generated guest local minimum conformations. An analysis of the potential energies of these local minimum conformations showed that 22 (100%), 18 (82%), 16 (73%), and 12 (55%) of the 22 guest bound conformations in the crystal structures had conformational strain energies of less than or equal to 3.8, 2.0, 0.6, and 0.0 kcal/mol, respectively. These results suggest that (1) the NEM procedure can generate small–molecule bound conformations, and (2) guests adopt low-strain–energy conformations for complexation, thus supporting the virtual screening methods that use local minimum conformations
Phagocytosis of Cholesteryl Ester Is Amplified in Diabetic Mouse Macrophages and Is Largely Mediated by CD36 and SR-A
Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMΦs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMΦs from heterozygote control (db/+) mice. Notably, PerMΦ fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMΦ. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMΦs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression
Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite
Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion
Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur
Mosasaurs (family Mosasauridae) are a diverse group of secondarily aquatic lizards that radiated into marine environments during the Late Cretaceous (98–65 million years ago). For the most part, they have been considered to be simple anguilliform swimmers – i.e., their propulsive force was generated by means of lateral undulations incorporating the greater part of the body – with unremarkable, dorsoventrally narrow tails and long, lizard-like bodies. Convergence with the specialized fusiform body shape and inferred carangiform locomotory style (in which only a portion of the posterior body participates in the thrust-producing flexure) of ichthyosaurs and metriorhynchid crocodyliform reptiles, along with cetaceans, has so far only been recognized in Plotosaurus, the most highly derived member of the Mosasauridae. Here we report on an exceptionally complete specimen (LACM 128319) of the moderately derived genus Platecarpus that preserves soft tissues and anatomical details (e.g., large portions of integument, a partial body outline, putative skin color markings, a downturned tail, branching bronchial tubes, and probable visceral traces) to an extent that has never been seen previously in any mosasaur. Our study demonstrates that a streamlined body plan and crescent-shaped caudal fin were already well established in Platecarpus, a taxon that preceded Plotosaurus by 20 million years. These new data expand our understanding of convergent evolution among marine reptiles, and provide insights into their evolution's tempo and mode
Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector
A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN
Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth
The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance
Background. HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure) and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods. The additional malaria parasite biomass related to HIV-1 co-infection in sub-Saharan Africa was estimated by a mathematical model. Parasite biomass was computed as the incidence rate of clinical malaria episodes multiplied by the number of parasites circulating in the peripheral blood of patients at the time symptoms appear. A mathematical model estimated the influence of HIV-1 infection on parasite density in clinical malaria by country and by age group, malaria transmission intensity and urban/rural area. In a multivariate sensitivity analysis, 95% confidence intervals (CIs) were calculated using the Monte Carlo simulation. Results. The model shows that in 2005 HIV-1 increased the overall malaria parasite biomass by 18.0% (95%CI: 11.6-26.9). The largest relative increase (134.9-243.9%) was found in southern Africa where HIV-1 prevalence is the highest and malaria transmission unstable. The largest absolute increase was found in Zambia, Malawi, the Central African Republic and Mozambique, where both malaria and HIV are highly endemic. A univariate sensitivity analysis shows that estimates are sensitive to the magnitude of the impact of HIV-1 infection on the malaria incidence rates and associated parasite densities. Conclusion. The HIV-1 epidemic by increasing the malaria parasite biomass in sub-Saharan Africa may also increase the emergence of antimalarial drug resistance, potentially affecting the health of the whole population in countries endemic for both HIV-1 and malaria
- …